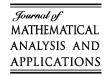


Available online at www.sciencedirect.com

J. Math. Anal. Appl. 318 (2006) 253-270



www.elsevier.com/locate/jmaa

On semilinear elliptic equations involving concave—convex nonlinearities and sign-changing weight function

Tsung-Fang Wu¹

Center for General Education, Southern Taiwan University of Technology, Tainan 71005, Taiwan
Received 16 March 2005
Available online 20 June 2005
Submitted by A. Cellina

Abstract

In this paper, we study the combined effect of concave and convex nonlinearities on the number of positive solutions for semilinear elliptic equations with a sign-changing weight function. With the help of the Nehari manifold, we prove that there are at least two positive solutions for Eq. $(E_{\lambda,f})$ in bounded domains.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Semilinear elliptic equations; Nehari manifold; Concave-convex nonlinearities

1. Introduction

In this paper, we consider the multiplicity results of positive solutions of the following semilinear elliptic equation:

$$\begin{cases}
-\Delta u = u^p + \lambda f(x)u^q & \text{in } \Omega, \\
0 \leqslant u \in H_0^1(\Omega),
\end{cases} (E_{\lambda,f})$$

E-mail address: tfwu@mail.stut.edu.tw.

¹ Partially supported by the National Science Council of Republic of China.

where Ω is a bounded domain in \mathbb{R}^N , $0 < q < 1 < p < 2^*$ $(2^* = \frac{N+2}{N-2})$ if $N \ge 3$, $2^* = \infty$ if N = 2), $\lambda > 0$ and $f : \overline{\Omega} \to \mathbb{R}$ is a continuous function which change sign in $\overline{\Omega}$. Associated with Eq. $(E_{\lambda, f})$, we consider the energy functional J_{λ} , for each $u \in H_0^1(\Omega)$,

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx - \frac{\lambda}{q+1} \int_{\Omega} f(x) |u|^{q+1} dx.$$

It is well known that the solutions of Eq. $(E_{\lambda,f})$ are the critical points of the energy functional J_{λ} (see Rabinowitz [12]).

The fact that the number of positive solutions of Eq. $(E_{\lambda,f})$ is affected by the concave and convex nonlinearities has been the focus of a great deal of research in recent years. If the weight function $f(x) \equiv 1$, the authors Ambrosetti et al. [2] have investigated Eq. $(E_{\lambda,1})$. They found that there exists $\lambda_0 > 0$ such that Eq. $(E_{\lambda,1})$ admits at least two positive solution for $\lambda \in (0, \lambda_0)$, has a positive solution for $\lambda = \lambda_0$ and no positive solution exists for $\lambda > \lambda_0$. Actually, Adimurthy et al. [1], Damascelli et al. [7], Ouyang and Shi [11], and Tang [16] proved that there exists $\lambda_0 > 0$ such that Eq. $(E_{\lambda,1})$ in the unit ball $B^N(0;1)$ has exactly two positive solution for $\lambda \in (0,\lambda_0)$, has exactly one positive solution for $\lambda = \lambda_0$ and no positive solution exists for $\lambda > \lambda_0$.

The purpose of this paper is to consider the multiplicity of positive solution of Eq. $(E_{\lambda,f})$ for a changing sign potential function f(x). We prove that Eq. $(E_{\lambda,f})$ has at least two positive solutions for λ is sufficiently small.

Theorem 1. There exists $\lambda_0 > 0$ such that for $\lambda \in (0, \lambda_0)$, Eq. $(E_{\lambda, f})$ has at least two positive solutions.

Among the other interesting problems which are similar of Eq. $(E_{\lambda,f})$ for q=0, Bahri [3], Bahri and Berestycki [4], and Struwe [13] have investigated the following equation:

$$\begin{cases}
-\Delta u = |u|^{p-1}u + f(x) & \text{in } \Omega, \\
u \in H_0^1(\Omega),
\end{cases}$$
(E_f)

where $f \in L^2(\Omega)$ and Ω is a bounded domain in \mathbb{R}^N . They found that Eq. (E_f) possesses infinitely many solutions. Furthermore, Cîrstea and Rădulescu [5], Cao and Zhou [6], and Ghergu and Rădulescu [10] have been investigated the analogue Eq. (E_f) in \mathbb{R}^N .

This paper is organized as follows. In Section 2, we give some notations and preliminaries. In Section 3, we prove that Eq. $(E_{\lambda,f})$ has at least two positive solutions for λ sufficiently small.

2. Notations and preliminaries

Throughout this section, we denote by *S* the best Sobolev constant for the embedding of $H_0^1(\Omega)$ in $L^{p+1}(\Omega)$. Now, we consider the Nehari minimization problem: for $\lambda > 0$,

$$\alpha_{\lambda}(\Omega) = \inf \{ J_{\lambda}(u) \mid u \in \mathbf{M}_{\lambda}(\Omega) \},$$

Download English Version:

https://daneshyari.com/en/article/4623697

Download Persian Version:

https://daneshyari.com/article/4623697

<u>Daneshyari.com</u>