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a b s t r a c t

We analyze the modulation instability spectrum in a varying dispersion optical fiber as a function of the
dispersion oscillation amplitude. For large dispersion oscillations, we predict a novel sideband splitting
into different sub-sidebands. The emergence of the new sidebands is observed whenever the classical
perturbation analysis for parametric resonances predicts vanishing sideband amplitudes. The numerical
results are in good quantitative agreement with Floquet or Bloch stability analysis of four-wave mixing in
the periodic dispersion fiber. We have also shown that linear gain or loss may have a dramatic influence
in reshaping the new sidebands.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modulation instability (MI) is a nonlinear process that has been
widely investigated in various fields of physics including plasma,
hydrodynamics and optics, to cite a few. In the presence of a high
power continuous wave (CW), MI leads to the emergence and
amplification of gain sidebands in the wave spectrum. In nonlinear
fiber optics, such a process has been demonstrated in fibers with
anomalous, constant group velocity dispersion (GVD) [1], as well
as in normal GVD fibers by enabling the fulfillment of the nonlinear
phase-matching condition through either fourth order dispersion
[2], birefringence or a multimodal structure [3,4]. More recently,
a renewed experimental and theoretical interest in MI studies
has been stimulated by the availability of fibers presenting a longi-
tudinal and periodic modulation of their dispersion properties [5].
Indeed, thanks to the periodic dispersion landscape, which leads to
quasi-phase-matching (QPM) of the nonlinear four-wave mixing
(FWM) process, MI sidebands can be observed even in the regime
of normal average GVD of a dispersion-oscillating optical fiber
(DOF) [6–8]. Recent experimental works have confirmed the
QPM-induced MI process in the normal GVD regime of microstruc-
tured DOF around 1 lm [5], as well as of non-microstructured
highly nonlinear DOF at telecom wavelengths [9,10].

To date, the role of the amplitude of the GVD oscillations on the
MI spectrum of a DOF remains largely unexplored. In this work, we
present a systematic study of the dependence of various sidebands
which emerge at the output of a DOF, as the amplitude of the

dispersion variations grows progressively larger. We unveil the
emergence of new sidebands, as well as their unexpected splitting
in sub-sidebands. As we shall see, the emergence of new sidebands
may be qualitatively described by extending to a continuum set of
frequencies the analytical theory that was established in [11] for a
discrete set of sidebands. We also present a detailed study of the
influence of optical losses on the profile and splitting of MI side-
bands in a DOF.

2. Model and situation under investigation

The evolution of the optical field w in an DOF can be described
by the nonlinear Schrödinger equation (NLSE) that includes both
the Kerr nonlinearity c and a periodically varying second-order dis-
persion b2(z)
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In the last section of this paper, we will also discuss the influ-
ence of linear losses that are included through the coefficient a
(negative and positive values of a leading to distributed amplifica-
tion and losses respectively). In Eq. (1) we did not include higher-
order dispersion terms or Raman scattering. Nevertheless, we
checked that these effects do not have a noticeable influence on
the MI spectral dynamics that we are going to describe.

MI induced by the longitudinal variations of chromatic disper-
sion has been theoretically investigated before in a wide range of
configurations, ranging from sinusoidal profiles with a spatial
period of a few tens of meters [5,9], up to dispersion-managed
systems with periods of several kilometers [6,12–14]. We consider
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in this contribution the specific case of DOF whose parameters are
inspired by the previous numerical works which were carried out
in the context of the transmission of high-speed telecommunica-
tion signals in dense dispersion managed links [15]. The fabrication
of such a DOF is fully consistent with existing drawing techniques
[16]. More precisely, the stepwise dispersion profile over one
spatial period K of the fiber under study is provided by the map

b2ðzÞ ¼ b2av þ b2amps if z < K=2
b2ðzÞ ¼ b2av � b2amps if z > K=2

(
ð2Þ

where b2av is the average dispersion of the fiber, and b2ampS is half of
the peak-to-peak amplitude of the dispersion variation (the second
order dispersion b2 being related to the dispersion parameter D by
D = �2p c b2/k2, k being the wavelength and c the light velocity).
Using a Fourier decomposition, it is possible to decompose the pro-
file (2) into a series of sinus functions having spatial frequencies
multiple to 1/K. For the sake of simplicity, and since analytical solu-
tions exist for this case, we concentrate here on the fundamental
Fourier component, so that we may reduce the stepwise dispersion
profile (2) to the following sinusoidal variation

b2ðzÞ ¼ b2av þ b2amp sinð2pz=KÞ ð3Þ

where b2amp is the corresponding amplitude of the dispersion vari-
ation: b2amp = 4 b2amps/p.

Let us consider here a DOF with a Kerr nonlinearity of
c = 2 W�1 km�1, a spatial period of the dispersion oscillation
K = 1 km, and a dispersion average value of Dav = �0.5 ps/km/nm
at the wavelength k0 = 1550 nm. The fiber is pumped by a CW with
the average power P = 0.75 W at k0. The NLSE (1) is numerically
solved by the standard split-step Fourier algorithm including a
weak input white noise seed, and the results are averaged over
24 shots.

In the presence of sinusoidal longitudinal GVD variations, QPM
of FWM or MI leads to the appearance of resonant gain sidebands,
whose angular frequency shift relative to the pump can be analyt-
ically predicted, by assuming an indefinitely long fiber, as follows
[6]:

Xp ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pp=K� 2cP

b2av

s
ð4Þ

with p ¼ 1;2;3 . . .. More recently, it has been shown that the gain
experienced by the pth sidebands after a propagation length L can
be predicted by the formula [11]:

GdB
p ¼ 10 log10 exp 2cPL Jp

b2amp X2
p

2p=K
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where Jp is the Bessel function of order p. Note that Eqs. (4) and (5)
are derived from Eqs. (1)–(3) in a perturbation limit, namely when-
ever |b2amp/b2av|� 1 [7,17]. Therefore it is particularly interesting to
study the domain of their validity in situations where the amplitude
of the dispersion oscillations is equal or even much larger than the
average dispersion. Note that indeed dispersion managed transmis-
sion systems almost always operate in the so-called strong manage-
ment regime, namely the condition |b2amp/b2av|� 1 holds, which is
precisely the opposite of the domain of validity of the perturbation
theory that permits to derive Eqs. (4), (5).

3. Influence of the amplitude of the dispersion fluctuation

We start our study by investigating the influence of the ampli-
tude of dispersion fluctuations b2amp (or the corresponding Damp)
on the MI spectrum which is recorded after 12 spatial periods,
i.e., a propagation distance of 12 km. Results are plotted in Fig. 1
for three levels of the amplitude of GVD oscillations, namely

Damp = 0.5, 1.7 and 3.7 ps/km/nm, see subplots (a), (b) and (c),
respectively. Our motivation in varying the amplitude of the dis-
persion oscillations rather than other parameters (such as the aver-
age dispersion or the longitudinal period, for example) is that a
modification of the dispersion amplitude b2amp should in principle
have no influence, on the basis of Eq. (4), on the position of the MI
sidebands.

Indeed, for a relatively low level of dispersion fluctuations, that
is Damp = 0.5 ps/km/nm (case (a) of Fig. 1), we observe the genera-
tion of unequally spaced and narrow spectral sidebands, whose
position is in qualitative agreement with the analytical predictions
of Eq. (4) (see dashed vertical lines). The possibility of observing
QPM-induced MI in such a situation, where a large set of spectral
lines is generated, was experimentally confirmed in the work of
Droques et al. [5].

However, for an increasing level of dispersion amplitude oscilla-
tions (e.g., Damp = 1.7 ps/km/nm, case (b) of Fig. 1), we observe two
main features that lead to a very different structure of the output MI
spectrum. We first notice from Fig. 1(b) that some of the spectral
lines (for example, the lines corresponding to p = 2 or p = 5) have
disappeared from the MI spectrum. Moreover, we may also point
out in Fig. 1(b) the development of a new set of regularly spaced
sidebands with a broader bandwidth. The first feature is explained
by the evolution of the gain coefficient according to Eq. (5) which
leads, for some values of the argument, to the annihilation of the
sideband amplitude, as it was already confirmed experimentally
in [11]. On the other hand, the second feature is linked to FWM
between the pump wave and the first QPM sideband, and the
subsequent cascading of the FWM process, as it was previously
discussed and demonstrated experimentally in [9].

For an even higher amplitude of the dispersion oscillations, i.e.
Damp = 3.7 ps/km/nm (case (c) in Fig. 1), we observe instead of a
single gain sideband, the unexpected emergence of a pair of side-
bands around the angular frequency X1. The emergence of the
new pair of sidebands is not explained by nonlinear mixing
between the various other sidebands, but it is an intrinsic property
of the MI gain spectrum of Eqs. (1) and (3) in the strong dispersion
management regime.

To verify this statement, we may write the perturbed CW solu-
tion of the NLSE (1, 3) as wðz; tÞ ¼ ½

ffiffiffi
P
p
þ uðz; tÞ� expfiPzg, where we

Fig. 1. Evolution of the output spectra recorded after 12 km of propagation for
different values of the amplitude of the dispersion fluctuation: Damp = 0.5, 1.7 and
3.7 ps/km/nm, subplots (a), (b) and (c) and respectively. The vertical dashed lines
represent the predictions from Eq. (4).
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