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Abstract

We prove that any positive power bounded operator T in a KB-space E which satisfies

lim
n→∞ dist

(
1

n

n−1∑
k=0

T kx, [−g,g] + ηBE

)
= 0

(∀x ∈ E, ‖x‖ � 1
)
, (1)

where BE is the unit ball of E, g ∈ E+, and 0 � η < 1, is mean ergodic and its fixed space Fix(T ) is fi-
nite dimensional. This generalizes the main result of [E.Yu. Emelyanov, M.P.H. Wolff, Mean lower bounds
for Markov operators, Ann. Polon. Math. 83 (2004) 11–19]. Moreover, under the assumption that E is a
σ -Dedekind complete Banach lattice, we prove that if, for any positive power bounded operator T , the con-
dition (1) implies that T is mean ergodic then E is a KB-space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It was proved recently [4] that if T is a Markov operator on an L1-space then T is mean
ergodic and satisfies dim Fix(T ) < ∞ whenever there exist a function h ∈ L1+ and a real 0 �
η < 1 such that
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lim
n→∞

∥∥∥∥∥
(

h − 1

n

n−1∑
k=0

T kf

)
+

∥∥∥∥∥ � η

for every density f . In this paper, we extend this result to any positive power bounded operator on
a KB-space. Moreover, we show that this property of positive operators characterizes KB-spaces
among σ -Dedekind complete Banach lattices. The class of KB-spaces is large enough, it contains
L1-spaces as well as reflexive Banach lattices, for instance all Lp-spaces for 1 < p < ∞. The
principal tool in the proof of the main results of [4] was using the additivity of the norm on the
positive part of the L1-space. Since this is no longer the case for a general KB-space, we use
different ideas in the present paper. Our notation and terminology are standard, we follow the
books [1,8,10].

2. The main results

First we fix some necessary notion and definitions. Let E be a Banach lattice. For x � y in E,
we denote by [x, y] the order interval {z ∈ E: x � z � y}, and by BE = {z ∈ E: ‖z‖ � 1} the
closed unit ball of E. Given an element x ∈ E and a nonempty subset A ⊆ E,

dist(x,A) := inf
{‖x − a‖: a ∈ A

}
denotes the distance between x and A. For any operator T on E, Fix(T ) denotes the space of all
fixed vectors of T , and AT

n denotes the Cesàro means of T , i.e.,

AT
n = 1

n

n−1∑
k=0

T k.

An operator T on E is called mean ergodic if the sequence (AT
n x)n is norm convergent for all

x ∈ E, and we call T power bounded if supn�0 ‖T n‖ < ∞.
If T is a positive operator on E, then x ∈ E is called a positive fixed vector of maximal

support if x ∈ Fix(T ) ∩ E+ and every y ∈ Fix(T ) ∩ E+ is contained in the band generated by x.
An element x ∈ E+ is called a quasi-interior point if the order ideal Ex := ⋃∞

n=1[−nx,nx]
generated by x is norm-dense in E.

Theorem 1. Let E be a KB-space, T be a positive power bounded operator in E, W be a weakly
compact subset of E, and η ∈ R, 0 � η < 1 be such that

lim
n→∞ dist

(
AT

n x,W + ηBE

) = 0

for any x ∈ BE . Then T is mean ergodic.

Proof. The first part of this proof is motivated by the proof of Theorem 5.3 in Räbiger’s paper [9].
Without lost of generality we may assume that E has a quasi-interior point. Indeed, for any

x ∈ E, x 
= 0, we consider the closed order ideal F generated by {T n|x|: n � 0}, instead of E.
Then F is a KB-space [10, Proposition II.5.15] with a quasi-interior point

∑
n�0 2−nT n|x| and

T (F ) ⊆ F . Moreover, F is a projection band in E [8, Corollary 2.2.4]. If P :E → F denotes the
corresponding band projection, then

lim
n→∞ dist

(
AT

n z,P (W) + ηBF

) = 0 (∀z ∈ BF ).



Download	English	Version:

https://daneshyari.com/en/article/4623999

Download	Persian	Version:

https://daneshyari.com/article/4623999

Daneshyari.com

https://daneshyari.com/en/article/4623999
https://daneshyari.com/article/4623999
https://daneshyari.com/

