

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 323 (2006) 371-378

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Mean ergodicity of positive operators in KB-spaces

S. Alpay, A. Binhadjah, E.Yu. Emelyanov, Z. Ercan*

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 11 July 2005 Available online 21 November 2005 Submitted by Steven G. Krantz

Abstract

We prove that any positive power bounded operator T in a KB-space E which satisfies

$$\lim_{n \to \infty} \operatorname{dist}\left(\frac{1}{n} \sum_{k=0}^{n-1} T^k x, [-g, g] + \eta B_E\right) = 0 \quad (\forall x \in E, \ \|x\| \le 1),$$

$$(1)$$

where B_E is the unit ball of $E, g \in E_+$, and $0 \le \eta < 1$, is mean ergodic and its fixed space Fix(*T*) is finite dimensional. This generalizes the main result of [E.Yu. Emelyanov, M.P.H. Wolff, Mean lower bounds for Markov operators, Ann. Polon. Math. 83 (2004) 11–19]. Moreover, under the assumption that *E* is a σ -Dedekind complete Banach lattice, we prove that if, for any positive power bounded operator *T*, the condition (1) implies that *T* is mean ergodic then *E* is a *KB*-space. © 2005 Elsevier Inc. All rights reserved.

Keywords: KB-space; Positive operator; Mean ergodic operator

1. Introduction

It was proved recently [4] that if T is a Markov operator on an L^1 -space then T is mean ergodic and satisfies dim $Fix(T) < \infty$ whenever there exist a function $h \in L^1_+$ and a real $0 \le \eta < 1$ such that

* Corresponding author.

E-mail addresses: safak@math.metu.edu.tr (S. Alpay), e130807@metu.edu.tr (A. Binhadjah), emelanov@math.metu.edu.tr (E.Yu. Emelyanov), zercan@math.metu.edu.tr, zercan@metu.edu.tr (Z. Ercan).

0022-247X/\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.10.054

$$\lim_{n \to \infty} \left\| \left(h - \frac{1}{n} \sum_{k=0}^{n-1} T^k f \right)_+ \right\| \leq \eta$$

for every density f. In this paper, we extend this result to any positive power bounded operator on a *KB*-space. Moreover, we show that this property of positive operators characterizes *KB*-spaces among σ -Dedekind complete Banach lattices. The class of *KB*-spaces is large enough, it contains L^1 -spaces as well as reflexive Banach lattices, for instance all L^p -spaces for 1 . Theprincipal tool in the proof of the main results of [4] was using the additivity of the norm on the $positive part of the <math>L_1$ -space. Since this is no longer the case for a general *KB*-space, we use different ideas in the present paper. Our notation and terminology are standard, we follow the books [1,8,10].

2. The main results

First we fix some necessary notion and definitions. Let *E* be a Banach lattice. For $x \le y$ in *E*, we denote by [x, y] the order interval $\{z \in E : x \le z \le y\}$, and by $B_E = \{z \in E : ||z|| \le 1\}$ the closed unit ball of *E*. Given an element $x \in E$ and a nonempty subset $A \subseteq E$,

$$dist(x, A) := inf\{||x - a||: a \in A\}$$

denotes the distance between x and A. For any operator T on E, Fix(T) denotes the space of all fixed vectors of T, and A_n^T denotes the Cesàro means of T, i.e.,

$$\mathcal{A}_n^T = \frac{1}{n} \sum_{k=0}^{n-1} T^k.$$

An operator *T* on *E* is called *mean ergodic* if the sequence $(\mathcal{A}_n^T x)_n$ is norm convergent for all $x \in E$, and we call *T* power bounded if $\sup_{n \ge 0} ||T^n|| < \infty$.

If T is a positive operator on E, then $x \in E$ is called a *positive fixed vector of maximal* support if $x \in Fix(T) \cap E_+$ and every $y \in Fix(T) \cap E_+$ is contained in the band generated by x. An element $x \in E_+$ is called a *quasi-interior point* if the order ideal $E_x := \bigcup_{n=1}^{\infty} [-nx, nx]$ generated by x is norm-dense in E.

Theorem 1. Let *E* be a KB-space, *T* be a positive power bounded operator in *E*, *W* be a weakly compact subset of *E*, and $\eta \in \mathbb{R}$, $0 \leq \eta < 1$ be such that

$$\lim_{n\to\infty} \operatorname{dist}(\mathcal{A}_n^T x, W + \eta B_E) = 0$$

for any $x \in B_E$. Then T is mean ergodic.

Proof. The first part of this proof is motivated by the proof of Theorem 5.3 in Räbiger's paper [9].

Without lost of generality we may assume that *E* has a quasi-interior point. Indeed, for any $x \in E$, $x \neq 0$, we consider the closed order ideal *F* generated by $\{T^n | x| : n \ge 0\}$, instead of *E*. Then *F* is a *KB*-space [10, Proposition II.5.15] with a quasi-interior point $\sum_{n\ge 0} 2^{-n}T^n |x|$ and $T(F) \subseteq F$. Moreover, *F* is a projection band in *E* [8, Corollary 2.2.4]. If $P : E \to F$ denotes the corresponding band projection, then

$$\lim_{n \to \infty} \operatorname{dist} \left(\mathcal{A}_n^T z, P(W) + \eta B_F \right) = 0 \quad (\forall z \in B_F).$$

372

Download English Version:

https://daneshyari.com/en/article/4623999

Download Persian Version:

https://daneshyari.com/article/4623999

Daneshyari.com