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Abstract

We give variational characterizations of the leading eigenvalue of neutron transport-like operators.
The proofs rely on sub- and super-eigenvalues. Various bounds of the leading eigenvalue are derived.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper provides a new approach of the leading eigenvalue for neutron transport-
like equations. The so-called time eigenvalue of the fundamental mode (i.e. the leading
eigenvalue) of neutron transport operators plays a basic role in nuclear reactor theory, e.g.,
in pulsed experiments [6, Chapter 5] or in the stochastic description of neutron chain fis-
sions [3]. This eigenvalue or, more generally, the peripheral spectrum of such operators
is strongly related to their positivity properties (in the lattice sense); see [17] and refer-
ences therein. In the same spirit, positivity plays an essential role in reactor criticality;
see [14] and references therein. We refer to [10, Chapter 5] and references therein for
the known results on the leading eigenvalue of neutron transport operators. Motivated by
transport theory, the present paper is devoted tovariational characterizationsof the lead-
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ing eigenvalue for a class of perturbed operators of the formA = T + K whereT is an
unbounded operator with apositive resolventandK is a boundedpositiveoperator. If we
denote respectively bys(T ) ands(A) the spectral bound ofT andA and if some power
of (λ − T )−1K is compact(λ > s(T )), then it is known thats(A) is the leading eigen-
value ofA onces(T ) < s(A) [16]. Here, this leading eigenvalue is handled by means of
sub-eigenvalues or super-eigenvalues. Roughly speaking, we prove thatλ ∈ ]s(T ), s(A)[
if and only if λ is a sub-eigenvalue, i.e. there exists a nonnegative (non-trivial)ϕ such
that Aϕ � λϕ. We show also thatλ ∈ ]s(A),∞[ if and only if λ is a super-eigenvalue,
i.e. there exists a nonnegative (non-trivial)ϕ such thatAφ � λφ. It follows thats(A) can
be characterized as the supremum of sub-eigenvalues or the infimum of super-eigenvalues.
This provides us withmax–inf andmin–supprinciples for the leading eigenvalue. This
first part of our work, of more functional analytic character, is in the spirit of I. Marek [9]
who deals, in particular, with variational characterizations of spectral radius of certain pos-
itive operators. In the second part, devoted specifically to neutron transport, we show how
to derive in a systematic manner, from the above (abstract) variational principles, upper
and lower bounds of the leading eigenvalue in terms of various physical parameters. This
paper resumes some results from a longer preliminary version [12] containing additional
results and references. We present now our general framework. LetΩ ⊂ RN be a smooth
and bounded open set and letµ be a positive Radon measure onRN with supportV . We
refer toV as the velocity space. We assume in this paper thatV is bounded away from
zero, i.e. 0 /∈ V . We refer to [12] for the case 0∈ V . Let T be the advection operator in
Lp(Ω × V ) := Lp(Ω × V ;dx dµ(v)) (1� p < ∞)

T ϕ = −v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v), ϕ ∈ D(T )

with domain

W
p

0− =
{
ϕ ∈ Lp(Ω × V ); v · ∂ϕ

∂x
∈ Lp(Ω × V ), ϕ = 0 onΓ−

}

whereΓ− := {(x, v) ∈ ∂Ω × V ; v · n(x) < 0} and n(x) is the outward unit vector at
x ∈ ∂Ω . The real and bounded measurable functionσ(·,·) is the collision frequency while
the scattering (or collision) operator is

K : ϕ ∈ Lp(Ω × V ) →
∫
V

k(x, v, v′)ϕ(x, v′) dµ(v′) ∈ Lp(Ω × V ).

Finally, the neutron transport operator is given by

A : ϕ ∈ W
p

0− → −v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v) +

∫
V

k(x, v, v′)ϕ(x, v′) dµ(v′)

with the same domain as the advection operatorT . The cross sectionsσ(·,·) andk(·, · ,·)
arenonnegativein accordance with the physical theory. The spectral bound ofT , s(T ) =
sup{Reλ;λ ∈ σ(T )}, is characterized in full generality in [18]:s(T ) = −λ∗ where

λ∗ = lim
t→∞ inf{(x,v)∈Ω×V ; t<τ(x,−v)} t−1

t∫
0

σ(x + sv, v) ds
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