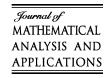


Available online at www.sciencedirect.com

J. Math. Anal. Appl. 315 (2006) 263-275



www.elsevier.com/locate/jmaa

On the leading eigenvalue of neutron transport models

Mustapha Mokhtar-Kharroubi

Département de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
Received 20 April 2004
Available online 16 September 2005
Submitted by J.R. McLaughlin

Abstract

We give variational characterizations of the leading eigenvalue of neutron transport-like operators. The proofs rely on sub- and super-eigenvalues. Various bounds of the leading eigenvalue are derived. © 2005 Elsevier Inc. All rights reserved.

Keywords: Positivity; Leading eigenvalue; Sub-eigenvalue; Super-eigenvalue; Transport equations

1. Introduction

This paper provides a new approach of the leading eigenvalue for neutron transport-like equations. The so-called time eigenvalue of the fundamental mode (i.e. the leading eigenvalue) of neutron transport operators plays a basic role in nuclear reactor theory, e.g., in pulsed experiments [6, Chapter 5] or in the stochastic description of neutron chain fissions [3]. This eigenvalue or, more generally, the peripheral spectrum of such operators is strongly related to their positivity properties (in the lattice sense); see [17] and references therein. In the same spirit, positivity plays an essential role in reactor criticality; see [14] and references therein. We refer to [10, Chapter 5] and references therein for the known results on the leading eigenvalue of neutron transport operators. Motivated by transport theory, the present paper is devoted to *variational characterizations* of the lead-

E-mail address: mokhtar@math.univ-fcomte.fr.

ing eigenvalue for a class of perturbed operators of the form A = T + K where T is an unbounded operator with a positive resolvent and K is a bounded positive operator. If we denote respectively by s(T) and s(A) the spectral bound of T and A and if some power of $(\lambda - T)^{-1}K$ is compact $(\lambda > s(T))$, then it is known that s(A) is the leading eigenvalue of A once s(T) < s(A) [16]. Here, this leading eigenvalue is handled by means of sub-eigenvalues or super-eigenvalues. Roughly speaking, we prove that $\lambda \in [s(T), s(A)]$ if and only if λ is a *sub-eigenvalue*, i.e. there exists a nonnegative (non-trivial) φ such that $A\varphi \geqslant \lambda \varphi$. We show also that $\lambda \in]s(A), \infty[$ if and only if λ is a super-eigenvalue, i.e. there exists a nonnegative (non-trivial) φ such that $A\varphi \leq \lambda \varphi$. It follows that s(A) can be characterized as the supremum of sub-eigenvalues or the infimum of super-eigenvalues. This provides us with max-inf and min-sup principles for the leading eigenvalue. This first part of our work, of more functional analytic character, is in the spirit of I. Marek [9] who deals, in particular, with variational characterizations of spectral radius of certain positive operators. In the second part, devoted specifically to neutron transport, we show how to derive in a systematic manner, from the above (abstract) variational principles, upper and lower bounds of the leading eigenvalue in terms of various physical parameters. This paper resumes some results from a longer preliminary version [12] containing additional results and references. We present now our general framework. Let $\Omega \subset \mathbb{R}^N$ be a smooth and bounded open set and let μ be a positive Radon measure on \mathbb{R}^N with support V. We refer to V as the velocity space. We assume in this paper that V is bounded away from zero, i.e. $0 \notin V$. We refer to [12] for the case $0 \in V$. Let T be the advection operator in $L^{p}(\Omega \times V) := L^{p}(\Omega \times V; dx \, d\mu(v)) \, (1 \leqslant p < \infty)$

$$T\varphi = -v \cdot \frac{\partial \varphi}{\partial x} - \sigma(x, v)\varphi(x, v), \quad \varphi \in D(T)$$

with domain

$$W_{0-}^{p} = \left\{ \varphi \in L^{p}(\Omega \times V); \ v \cdot \frac{\partial \varphi}{\partial x} \in L^{p}(\Omega \times V), \ \varphi = 0 \text{ on } \Gamma_{-} \right\}$$

where $\Gamma_- := \{(x, v) \in \partial \Omega \times V; \ v \cdot n(x) < 0\}$ and n(x) is the outward unit vector at $x \in \partial \Omega$. The real and bounded measurable function $\sigma(\cdot, \cdot)$ is the collision frequency while the scattering (or collision) operator is

$$K: \varphi \in L^p(\Omega \times V) \to \int\limits_V k(x,v,v') \varphi(x,v') \, d\mu(v') \in L^p(\Omega \times V).$$

Finally, the neutron transport operator is given by

$$A: \varphi \in W^p_{0-} \to -v \cdot \frac{\partial \varphi}{\partial x} - \sigma(x,v) \varphi(x,v) + \int\limits_V k(x,v,v') \varphi(x,v') \, d\mu(v')$$

with the same domain as the advection operator T. The cross sections $\sigma(\cdot, \cdot)$ and $k(\cdot, \cdot, \cdot)$ are *nonnegative* in accordance with the physical theory. The spectral bound of T, $s(T) = \sup\{\text{Re }\lambda; \lambda \in \sigma(T)\}$, is characterized in full generality in [18]: $s(T) = -\lambda^*$ where

$$\lambda^* = \lim_{t \to \infty} \inf_{\{(x,v) \in \Omega \times V; \ t < \tau(x,-v)\}} t^{-1} \int_0^t \sigma(x + sv, v) \, ds$$

Download English Version:

https://daneshyari.com/en/article/4624149

Download Persian Version:

https://daneshyari.com/article/4624149

<u>Daneshyari.com</u>