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Abstract

In this work, we derive the Euler—Lagrange equation for an elastic line which is lying on a pseudo-
hypersurface in pseudo-Euclidean spaggsFollowing this, we check the solutions which depend
on the boundary conditions whether they are geodesic on a pseudo-hypersurface or not. The relaxed
elastic line on a pseudo-hyperplane, a pseudo-hypersphere, and pseudo-hyperbolic space is a geo-
desic. However, the relaxed elastic line on a pseudo-hypercylinder, is a space-like geodesic.
0 2005 Elsevier Inc. All rights reserved.

Keywords: Relaxed elastic line; Elasticity problem; Pseudo-Euclidean spaces; Pseudo-hypersurfaces; Geodesics;
Euler-Lagrange equations

* Corresponding author.
E-mail addresses: ceylan@fef.sdu.edu.tr (A.C. Coken), yucesan@fef.sdu.edu.tr (A. Ylicesan),

ayyildiz@fef.sdu.edu.tr (N. Ayyildiz), gmanning@rutchem.rutgers.edu (G.S. Manning).

0022-247X/$ — see front matted 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.05.051



368 A.C. Coken et al. / J. Math. Anal. Appl. 315 (2006) 367-378

1. Introduction

Let E} be n-dimensional pseudo-Euclidean space of S|gna(uﬂe =, )
\q/_

-
n—vy %

The metric tensor is given by

ds? —de — Z dx,, (1.1)

i=n+1-v

where(xy, ..., x,) is a rectangular coordinate systemejf[6].

Definition 1.1. Letn > 2 and 0< v < n. Then,

(1) the pseudo-hypersphere of radius O in E], is the hyperquadric

Sty =gt A ={p eEL (p.p) =12},

with dimensiorm and indexv;
(2) the pseudo-hyperbolic space of radius O in E”. is the hyperquadric

H () =q  (=r®)={p E}: (p.p)=—r?}.

with dimensiorm and indexv [5].

An elastic line of lengttt is defined as a curve with associated energy

L
=/@w, (1.2)
0

wheres is the arc length along the curve akﬁjis the first square curvature. The integral
K is calledthe total square curvature.

If no boundary conditions are imposedsat ¢, and if no external forces act at any
the elastic line igelaxed. The trajectory of relaxed elastic line in space or on a pseudo-
hyperplane is a straight line because the positive indefinite quantity that défitedses
its minimum value of zero when the first square curvature vanishes farEtle trajectory
of a relaxed elastic line constrained to lie on a general pseudo-hypersurface is, however,
dependent on the intrinsic curvature of the pseudo-hypersurface, which in general bounds
the possible values &t away from zero.

2. Preliminaries

Let « denote a curve on a connected oriented pseudo-hypersutfage pseudo-
Euclidean spaces!. At a pointa(s) of «, let E1 = «’(s) denote the unit tangent vector.
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