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Abstract

In this work, we derive the Euler–Lagrange equation for an elastic line which is lying on a pseudo-
hypersurface in pseudo-Euclidean spacesEn

ν . Following this, we check the solutions which depend
on the boundary conditions whether they are geodesic on a pseudo-hypersurface or not. The relaxed
elastic line on a pseudo-hyperplane, a pseudo-hypersphere, and pseudo-hyperbolic space is a geo-
desic. However, the relaxed elastic line on a pseudo-hypercylinder, is a space-like geodesic.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let En
ν be n-dimensional pseudo-Euclidean space of signature(+, · · · ,+︸ ︷︷ ︸

n−ν

,−, · · · ,−︸ ︷︷ ︸
ν

).

The metric tensor is given by

ds2 =
n−ν∑
i=1

dx2
i −

n∑
i=n+1−ν

dx2
i , (1.1)

where(x1, . . . , xn) is a rectangular coordinate system ofEn
ν [6].

Definition 1.1. Let n � 2 and 0� ν � n. Then,

(1) the pseudo-hypersphere of radiusr > 0 in En
ν is the hyperquadric

Sn−1
ν (r) = q−1(r2) = {

p ∈ En
ν : 〈p,p〉 = r2},

with dimensionn and indexν;
(2) the pseudo-hyperbolic space of radiusr > 0 in En

ν is the hyperquadric

Hn−1
ν−1 (r) = q−1(−r2) = {

p ∈ En
ν : 〈p,p〉 = −r2},

with dimensionn and indexν [5].

An elastic line of length� is defined as a curve with associated energy

K =
�∫

0

k2
1 ds, (1.2)

wheres is the arc length along the curve andk2
1 is the first square curvature. The integral

K is calledthe total square curvature.
If no boundary conditions are imposed ats = �, and if no external forces act at anys,

the elastic line isrelaxed. The trajectory of relaxed elastic line in space or on a pseudo-
hyperplane is a straight line because the positive indefinite quantity that definesK takes
its minimum value of zero when the first square curvature vanishes for alls. The trajectory
of a relaxed elastic line constrained to lie on a general pseudo-hypersurface is, however,
dependent on the intrinsic curvature of the pseudo-hypersurface, which in general bounds
the possible values ofK away from zero.

2. Preliminaries

Let α denote a curve on a connected oriented pseudo-hypersurfaceM in pseudo-
Euclidean spacesEn

ν . At a pointα(s) of α, let E1 = α′(s) denote the unit tangent vector.
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