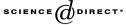
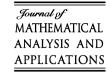


Available online at www.sciencedirect.com



J. Math. Anal. Appl. 321 (2006) 86-98



www.elsevier.com/locate/jmaa

Existence for a semilinear sixth-order ODE *

Tihomir Gyulov ^a, Gheorghe Morosanu ^b, Stepan Tersian ^{a,*}

^a Center of Applied Mathematics and Informatics, University of Rousse, 8, Studentska, 7017 Rousse, Bulgaria
 ^b Department of Mathematics and Its Applications, Central European University, Nador u. 9,
 H-1051 Budapest, Hungary

Received 6 July 2005

Available online 8 September 2005

Submitted by W. Layton

Dedicated to Professor Dan Pascali on the occasion of his 70th birthday

Abstract

In this paper we study the existence and multiplicity of nontrivial solutions for a boundary value problem associated with a semilinear sixth-order ordinary differential equation arising in the study of spatial patterns. Our treatment is based on variational tools, including two Brezis–Nirenberg's linking theorems.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Semilinear sixth-order ODE; Variational method; Brezis-Nirenberg's linking theorems

1. Introduction

In this paper, we study the existence and multiplicity of the solutions of the following boundary value problem, say (P):

$$u^{vi} + Au^{iv} + Bu'' + Cu = f(x, u), \quad 0 < x < L,$$
(1)

[★] This work was partially sponsored by the University of Rousse, Bulgaria, under Grant 05-PF-03, and by the National Research Fund in Bulgaria, under Grant VU-MI-02/05.

^{*} Corresponding author.

E-mail addresses: tgulov@ru.acad.bg (T. Gyulov), morosanug@ceu.hu (G. Morosanu), sterzian@ru.acad.bg, tersian@ami.ru.acad.bg (S. Tersian).

$$u(0) = u(L) = u''(0) = u''(L) = u^{iv}(0) = u^{iv}(L) = 0,$$
(2)

where A, B and C are some given real constants and f(x, u) is a continuous function on \mathbb{R}^2 , whose potential satisfies some suitable assumptions.

The problem is motivated by the study of the formation of the spatial periodic patterns in bistable systems. In investigating such spatial patterns, a key role is played by a model equation, which is simpler than the full equation describing the process. Recently, interest has turned to fourth-order parabolic differential equations, involving bistable dynamics, such as the extended Fisher–Kolmogorov (EFK) equation

$$\frac{\partial u}{\partial t} = -\gamma \frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial x^2} + u - u^3, \quad \gamma > 0,$$

proposed by Coullet, Elphick and Repaux in 1987 as well as by Dee and Van Saarlos in 1988. Another well-known equation of this type is the Swift–Hohenberg (SH) equation

$$\frac{\partial u}{\partial t} = \alpha u - \left(1 + \frac{\partial^2}{\partial x^2}\right)^2 u - u^3, \quad \alpha > 0,$$

proposed in 1977. While both the EFK equation and the SH equation involve fourth-order spatial derivatives, certain phase-field models lead to even higher-order spatial gradients. We mention the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^6 u}{\partial x^6} + A \frac{\partial^4 u}{\partial x^4} + B \frac{\partial^2 u}{\partial x^2} + u - u^3,$$

studied by Gardner and Jones [6] as well as by Caginalp and Fife [1].

If f is an even 2L-periodic function with respect to x, and odd with respect to u, the 2L-periodic extension \bar{u} of the odd extension of the solution u of problem (P) to the interval [-L, L] yields a 2L-periodic solution of Eq. (1).

The existence of periodic solutions of both the EFK equation and the SH equation was studied by Peletier and Troy [4], Peletier and Rottschäfer [5], Tersian and Chaparova [7] and other authors.

In this paper we introduce an extended class for the nonlinear term f(x, u) which includes the typical example $f(x, u) = b(x)u|u|^{p-2}$, where p > 2 and b(x) is a continuous positive function.

We suppose f(x, 0) = 0, $\forall x \in \mathbb{R}$, and the potential

$$F(x, u) = \int_{0}^{u} f(x, s) ds$$

satisfies the following assumptions:

(H₁) $\frac{F(x,u)}{u^2} \to +\infty$ as $|u| \to +\infty$, uniformly with respect to x in bounded intervals, and (H₂) $0 \le F(x,u) = o(u^2)$ as $u \to 0$, uniformly with respect to x in bounded intervals.

Download English Version:

https://daneshyari.com/en/article/4624279

Download Persian Version:

https://daneshyari.com/article/4624279

<u>Daneshyari.com</u>