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Abstract

Let E a real reflexive Banach space which admits a weakly sequentially continuous duality map-
ping from E to E∗, and K be a closed convex subset of E which is also a sunny nonexpansive
retract of E, and T :K → E be nonexpansive mappings satisfying the weakly inward condition and
F(T ) �= ∅, and f :K → K be a fixed contractive mapping. The implicit iterative sequence {xt } is
defined by for t ∈ (0,1)

xt = P
(
tf (xt ) + (1 − t)T xt

)
.

The explicit iterative sequence {xn} is given by

xn+1 = P
(
αnf (xn) + (1 − αn)T xn

)
,

where αn ∈ (0,1) and P is sunny nonexpansive retraction of E onto K . We prove that {xt } strongly
converges to a fixed point of T as t → 0, and {xn} strongly converges to a fixed point of T as αn

satisfying appropriate conditions. The results presented extend and improve the corresponding results
of [H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298
(2004) 279–291].
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1. Introduction and preliminaries

Let E be a real Banach space and let J denote the normalized duality mapping from E

into 2E∗
given by

J (x) = {
f ∈ E∗: 〈x,f 〉 = ‖x‖‖f ‖, ‖x‖ = ‖f ‖}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·,·〉 denotes the generalized duality pairing. In
the sequel, we shall denote the single-valued duality mapping by j , and denote F(T ) =
{x ∈ E: T x = x}. When {xn} is a sequence in E, then xn → x (respectively xn ⇀ x,

xn
∗
⇀ x) will denote strong (respectively weak, weak∗) convergence of the sequence {xn}

to x. In Banach space E, the following result (the Subdifferential Inequality) is well known
[1,9]: ∀x, y ∈ E, ∀j (x + y) ∈ J (x + y), ∀j (x) ∈ J (x),

‖x‖2 + 2
〈
y, j (x)

〉
� ‖x + y‖2 � ‖x‖2 + 2

〈
y, j (x + y)

〉
. (1.1)

Let E be a real Banach space and T a mapping with domain D(T ) and range R(T )

in E. T is called nonexpansive (respectively contractive) if for any x, y ∈ D(T ), such that

‖T x − Ty‖ � ‖x − y‖
(respectively ‖T x − Ty‖ � β‖x − y‖ for some 0 < β < 1). If I denotes the identity
operator and T is a contractive mapping, the following inequality holds [3]:〈

(I − T )x − (I − T )y, j (x − y)
〉
� (1 − β)‖x − y‖2. (1.2)

Let K be a closed convex subset of a uniformly smooth Banach space E, T :K → K

a nonexpansive mapping with F(T ) �= ∅, f :K → K a contraction. Then for any t ∈ (0,1),
the mapping

T
f
t :x �→ tf (x) + (1 − t)T x

is also contraction. Let xt denote the unique fixed point of T
f
t . In [3], H.K. Xu proved that

as t ↓ 0, {xt } converges to a fixed point p of T that is the unique solution of the variational
inequality〈

(I − f )u, j (u − p)
〉
� 0 for all p ∈ F(T ).

H.K. Xu also propose the following explicit iterative process {xn} given by

xn+1 = αnf (xn) + (1 − αn)T xn,

and prove that the explicit iterative process {xn} converges to a fixed point p of T .
In this paper, our purpose is to prove that in reflexive Banach space E which admits

a weakly sequentially continuous duality mapping from E to E∗, for nonexpansive nonself-
mapping T , both {xt } defined by (1.3) and {xn} defined by (1.4) strongly converges to a
fixed point of T , which generalizes and improves several recent results. Particularly, it
extends and improves Theorems 4.1 and 4.2 of [3].
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