Original article

The second Darboux problem for the wave equation with integral nonlinearity

Sergo Kharibegashvili ${ }^{\text {a,b }}$, Otar Jokhadze ${ }^{\text {a,c,,* }}$
${ }^{\text {a }}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University 6, Tamarashvili Str, Tbilisi 0177, Georgia
${ }^{\mathrm{b}}$ Department Mathematics of Georgian Technical University 77, Kostava Str., Tbilisi 0175, Georgia
${ }^{\text {c }}$ Faculty of Exact and Natural Sciences of Javakhishvili Tbilisi State University 13, University Str., Tbilisi 0186, Georgia

Available online 20 September 2016

Abstract

For a one-dimensional wave equation with integral nonlinearity, the second Darboux problem is considered for which the questions on the existence and uniqueness of a global solution are investigated. © 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Darboux problem; Integral nonlinearity; Wave equation; Global solvability

1. Statement of the problem

In a plane of independent variables x and t we consider the wave equation with integral nonlinearity of the type

$$
\begin{equation*}
L_{\lambda} u:=u_{t t}-u_{x x}+\lambda g\left(x, t, u, \int_{\alpha(t)}^{\beta(t)} u(x, t) d x\right)=f(x, t), \tag{1.1}
\end{equation*}
$$

where $\lambda \neq 0$ is the given real constant; g, α, β and f are the given and u is an unknown real functions of their arguments.

By $D_{T}:=\left\{(x, t) \in \mathbb{R}^{2}:-\widetilde{k}_{2} t<x<\widetilde{k}_{1} t, 0<t<T ; 0<\widetilde{k}_{i}:=\right.$ const $\left.<1, i=1,2\right\}$ we denote a triangular domain lying inside of a characteristic angle $\Lambda:=\left\{(x, t) \in \mathbb{R}^{2}: t>|x|\right\}$ and bounded by the segments $\widetilde{\gamma}_{1, T}: x=\widetilde{k}_{1} t, 0 \leq t \lesssim T, \widetilde{\gamma}_{2, T}: x=-\widetilde{k}_{2} t, 0 \leq t \leq T$ and $\widetilde{\gamma}_{3, T}: t=T,-\widetilde{k}_{2} T \leq x \leq \widetilde{k}_{1} T$. For $T=+\infty$, $D_{\infty}:=\left\{(x, t) \in \mathbb{R}^{2}:-\widetilde{\widetilde{k}}_{2} t<x<\widetilde{k}_{1} t, 0<t<+\infty\right\}$ (Fig. 1.1).

For Eq. (1.1), let us consider the second Darboux problem on finding in the domain D_{T} a solution $u(x, t)$ of the above equation by the boundary conditions (see e.g., [1, p. 107]; [2, p. 228])

$$
\begin{equation*}
\left.u\right|_{\tilde{\gamma}_{i}, T}=0, \quad i=1,2 \tag{1.2}
\end{equation*}
$$

[^0]

Fig. 1.1.
Below, when investigating problem (1.1), (1.2) it will be assumed that

$$
\begin{equation*}
-\widetilde{k}_{2} t \leq \alpha(t)<\beta(t) \leq \widetilde{k}_{1} t, \quad 0<t<\infty . \tag{1.3}
\end{equation*}
$$

For linear hyperbolic equations of second order with one spatial variable, a great number of works were devoted to the questions of the well-posedness of the Darboux problem (see, e.g., [2,3] and references therein). As it turned out, the presence of a weak nonlinearity in the equation affects the correctness of formulation even in the case of the first Darboux problem (see, e.g., [4-10]). Note that hyperbolic equations with nonlocal nonlinearities of type (1.1) have been considered in many works (see, e.g., [11-14] and references therein). In the present work it is shown that under definite conditions on the growth of nonlinear function $g=g\left(x, t, s_{1}, s_{2}\right)$ with respect to the variables s_{1}, s_{2} the second Darboux problem (1.1), (1.2) is globally solvable.

Definition 1.1. Let $\alpha, \beta \in C([0, T]), g \in C\left(\bar{D}_{T} \times \mathbb{R}^{2}\right), f \in C\left(\bar{D}_{T}\right)$. The function u is said to be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain D_{T} if $u \in C\left(\bar{D}_{T}\right)$ and there exists a sequence of functions $u_{n} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma_{T}\right)$ such that $u_{n} \rightarrow u$ and $L_{\lambda} u_{n} \rightarrow f$ in the space $C\left(\bar{D}_{T}\right)$, as $n \rightarrow \infty$, where $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \Gamma_{T}\right):=\left\{v \in C^{2}\left(\bar{D}_{T}\right):\left.v\right|_{\Gamma_{T}}=0\right\}, \Gamma_{T}:=\widetilde{\gamma}_{1, T} \cup \widetilde{\gamma}_{2, T}$.

Remark 1.1. Note that two different approximations with given properties define the same function in Definition 1.1. Obviously, the classical solution of problem (1.1), (1.2) from the space ${ }^{\circ}{ }^{2}\left(\bar{D}_{T}, \Gamma_{T}\right)$ is a strong generalized solution of that problem of the class C in the domain D_{T}. In its turn, if a strong generalized solution of problem (1.1), (1.2) of the class C in the domain D_{T} belongs to the space $C^{2}\left(\bar{D}_{T}\right)$, then it will be a classical solution of that problem, as well.

Definition 1.2. Let $\alpha, \beta \in C([0, \infty)), g \in C\left(\bar{D}_{\infty} \times \mathbb{R}^{2}\right), f \in C\left(\bar{D}_{\infty}\right)$. We say that problem (1.1), (1.2) is globally solvable in the class C, if for any finite $T>0$, this problem has a strong generalized solution of the class C in the domain D_{T}.

2. An a priori estimate of solution of problem (1.1), (1.2)

Let us consider the following condition imposed on the function g :

$$
\begin{equation*}
\left|g\left(x, t, s_{1}, s_{2}\right)\right| \leq a+b\left|s_{1}\right|+c\left|s_{2}\right|, \quad\left(x, t, s_{1}, s_{2}\right) \in \bar{D}_{T} \times \mathbb{R}^{2}, \tag{2.1}
\end{equation*}
$$

where $a, b, c=$ const ≥ 0.
Lemma 2.1. Let the condition (2.1) be fulfilled. Then for a strong generalized solution of problem (1.1), (1.2) of the class C in the domain D_{T} the following a priori estimate

$$
\begin{equation*}
\|u\|_{C\left(\bar{D}_{T}\right)} \leq c_{1}\|f\|_{C\left(\bar{D}_{T}\right)}+c_{2} \tag{2.2}
\end{equation*}
$$

with nonnegative constants $c_{i}, i=1,2$, independent of u and f, is valid.

https://daneshyari.com/en/article/4624410

Download Persian Version:
https://daneshyari.com/article/4624410

Daneshyari.com

[^0]: ${ }^{*}$ Corresponding author at: A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University 6, Tamarashvili Str., Tbilisi 0177, Georgia.

 E-mail addresses: khar@rmi.ge (S. Kharibegashvili), jokha@rmi.ge (O. Jokhadze).
 Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

