

Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute 170 (2016) 200-204

www.elsevier.com/locate/trmi

Original article

On the cardinal number of the family of all invariant extensions of a nonzero σ -finite invariant measure

Alexander Kharazishvili

A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University, 6 Tamarashvili st., Tbilisi 0177, Georgia

Available online 24 May 2016

Abstract

It is shown that, for any nonzero σ -finite translation invariant (translation quasi-invariant) measure μ on the real line **R**, the cardinality of the family of all translation invariant (translation quasi-invariant) measures on **R** extending μ is greater than or equal to 2^{ω_1} , where ω_1 denotes the first uncountable cardinal number. Some related results are also considered.

© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Invariant measure; Quasi-invariant measure; Metrical transitivity; Nonseparable extension of measure; Ulam's transfinite matrix

Let E be a base (ground) set and let G be a group of transformations of E. The pair (E, G) is usually called a space equipped with a transformation group.

A measure μ defined on some G-invariant σ -algebra of subsets of E is called quasi-invariant with respect to G (briefly, G-quasi-invariant) if, for any μ -measurable set X and for any transformation g from G, the relation

 $\mu(X) = 0 \quad \Leftrightarrow \quad \mu(g(X)) = 0$

holds true. Moreover, if the equality $\mu(g(X)) = \mu(X)$ is valid for any μ -measurable X and for any g from G, then μ is called an invariant measure with respect to G (briefly, G-invariant measure).

According to these definitions, the triplet of the form (E, G, μ) determines the structure of an invariant (quasiinvariant) measure on E.

Suppose that μ is a nonzero σ -finite *G*-invariant (*G*-quasi-invariant) measure on *E*. It is known that if a group *G* is uncountable and acts freely in *E*, then there always exist subsets of *E* nonmeasurable with respect to μ (see [1]; cf. also [2]). So the domain of μ differs from the family of all subsets of *E*, i.e., dom(μ) $\neq \mathcal{P}(E)$. In this connection, the natural question arises whether there exists a *G*-invariant (*G*-quasi-invariant) measure μ' on *E* strongly extending μ . This question was studied for various types of spaces (*E*, *G*, μ). Undoubtedly, the most interesting case for classical Real Analysis is when *E* coincides with the *n*-dimensional Euclidean space \mathbb{R}^n , a group *G* is a subgroup of the group of all isometric transformations of \mathbb{R}^n , and μ is a *G*-invariant extension of the standard *n*-dimensional Lebesgue measure λ_n on \mathbb{R}^n (see, for instance, [3–8]).

E-mail address: kharaz2@yahoo.com.

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2016.05.002

^{2346-8092/© 2016} Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Another important case is when $E = \Gamma$, where Γ is an uncountable σ -compact locally compact topological group, Γ coincides with the group of all left (right) translations of Γ , and μ is a *G*-invariant extension of the left (right) Haar measure on Γ (cf. [9,5,10,11]).

A more general form of the above question is as follows. For a given space (E, G, μ) , denote by $\mathcal{M}_G(\mu)$ the family of all measures on E extending μ and invariant (quasi-invariant) with respect to G. It is natural to try to evaluate the cardinality of $\mathcal{M}_G(\mu)$ in terms of card(E) and card(G). In the present paper, we will be dealing with this problem for the case when E coincides with the real line **R** and G is the group of all translations of **R**. Notice that the method applied in our further considerations is primarily taken from [6].

Below, we will use the following standard notation:

 $X \triangle Y$ = the symmetric difference of two sets X and Y;

 ω = the least infinite cardinal (ordinal) number;

 ω_1 = the least uncountable cardinal (ordinal) number;

 $\mathbf{c} =$ the cardinality of the continuum.

Let μ be a measure defined on some σ -algebra of subsets of E (here μ is not assumed to be invariant or quasiinvariant under a nontrivial group of transformations of E). The Hilbert space of all square μ -integrable real-valued functions on E is usually denoted by the symbol $L_2(\mu)$. If $L_2(\mu)$ is a separable Hilbert space, then μ is called a separable measure. Otherwise, μ is called a nonseparable measure.

Treating the real line **R** as a vector space over the field **Q** of all rational numbers and keeping in mind the existence of a Hamel basis in **R**, it is not difficult to show that the additive group (\mathbf{R} , +) admits a representation in the form

 $\mathbf{R} = G + H \quad (G \cap H = \{0\}),$

where G and H are some two subgroups of $(\mathbf{R}, +)$ and

 $\operatorname{card}(G) = \omega_1, \quad \operatorname{card}(H) \leq \mathbf{c}.$

We denote by \mathcal{I} the σ -ideal generated by all those subsets X of \mathbf{R} which are representable in the form X = Y + H, where $Y \subset G$ and $\operatorname{card}(Y) \leq \omega$.

It can readily be seen that \mathcal{I} is a translation invariant σ -ideal of sets in **R**.

We begin with the following auxiliary statement.

Lemma 1. There exists a partition $\{X_{\xi} : \xi < \omega_1\}$ of **R** satisfying these two relations:

(1) for any ordinal $\xi < \omega_1$, the set X_{ξ} belongs to the σ -ideal \mathcal{I} ;

(2) for each subset Ξ of ω_1 and for any $r \in \mathbf{R}$, the relation

 $(\cup \{X_{\xi} : \xi \in \Xi\}) \triangle (r + \cup \{X_{\xi} : \xi \in \Xi\}) \in \mathcal{I}$

holds true, i.e., the set $\cup \{X_{\xi} : \xi \in \Xi\}$ is \mathcal{I} -almost translation invariant in **R**.

The proof of this lemma is given in [6].

By combining Lemma 1 with the well-known ($\omega \times \omega_1$)-matrix of Ulam (see, e.g., [12]), the next auxiliary statement can be deduced.

Lemma 2. Let $\{X_{\xi} : \xi < \omega_1\}$ be a partition of **R** described in Lemma 1 and let μ be a nonzero σ -finite translation invariant (translation quasi-invariant) measure on **R**.

There exists a disjoint family $\{\Xi_j : j \in J\}$ *of subsets of* ω_1 *such that:*

- (1) $card(J) = \omega_1;$
- (2) for each index $j \in J$, the set $Z_j = \bigcup \{X_{\xi} : \xi \in \Xi_j\}$ is nonmeasurable with respect to μ (where $\{X_{\xi} : \xi < \omega_1\}$ is a partition of **R** described in Lemma 1);

(3) $\mu_*(\cup \{Z_j : j \in J\}) = 0$ (where the symbol μ_* denotes the inner measure associated with μ).

Notice that the proof of Lemma 2 is similar to the argument presented in [6] (cf. also [7]).

Lemma 3. Let μ be a σ -finite translation invariant (translation quasi-invariant) measure on **R**. There exists a measure μ' on **R** such that:

Download English Version:

https://daneshyari.com/en/article/4624418

Download Persian Version:

https://daneshyari.com/article/4624418

Daneshyari.com