A q-enumeration of lozenge tilings of a hexagon with three dents

Tri Lai
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, United States

A R T I C L E I N F O

Article history:

Received 4 February 2016
Received in revised form 30 June 2016
Accepted 10 July 2016
Available online 27 July 2016

$M S C$:

05A15
05C30
05C70

Keywords:

Graphical condensation
Lozenge tilings
Perfect matchings
Plane partitions

A B S T R A C T

MacMahon's classical theorem on boxed plane partitions states that the generating function of the plane partitions fitting in an $a \times b \times c$ box is equal to

$$
\frac{\mathrm{H}_{q}(a) \mathrm{H}_{q}(b) \mathrm{H}_{q}(c) \mathrm{H}_{q}(a+b+c)}{\mathrm{H}_{q}(a+b) \mathrm{H}_{q}(b+c) \mathrm{H}_{q}(c+a)},
$$

where $\mathrm{H}_{q}(n):=[0]_{q}!\cdot[1]_{q}!\ldots[n-1]_{q}$! and $[n]_{q}!:=\prod_{i=1}^{n}(1+$ $\left.q+q^{2}+\cdots+q^{i-1}\right)$. By viewing a boxed plane partition as a lozenge tiling of a semi-regular hexagon, MacMahon's theorem yields a natural q-enumeration of lozenge tilings of the hexagon. However, such q-enumerations do not appear often in the domain of enumeration of lozenge tilings. In this paper, we consider a new q-enumeration of lozenge tilings of a hexagon with three bowtie-shaped regions removed from three non-consecutive sides.
The unweighted version of the result generalizes a problem posed by James Propp on enumeration of lozenge tilings of a hexagon of side-lengths $2 n, 2 n+3,2 n, 2 n+3,2 n$, $2 n+3$ (in cyclic order) with the central unit triangles on the $(2 n+3)$-sides removed. Moreover, our result also implies a q-enumeration of boxed plane partitions with certain constraints.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A plane partition is a rectangular array of non-negative integers so that all rows are weakly decreasing from left to right and all columns are weakly decreasing from top to bottom. The plane partitions having a rows and b columns with entries at most c are usually identified with their 3-D interpretations - piles of unit cubes fitting in an $a \times b \times c$ box. (Such plane partitions are usually called boxed plane partitions.) The latter piles of unit cubes are in bijection with the lozenge tilings of the semi-regular hexagon $\operatorname{Hex}(a, b, c)$ of side-lengths a, b, c, a, b, c (in clockwise order, starting from the northwest side) on the triangular lattice. Here, a lozenge is a union of any two unit equilateral triangles sharing an edge, and a lozenge tiling of a region ${ }^{1}$ is a covering of the region by lozenges so that there are no gaps or overlaps. The volume (or the norm) of the plane partition π is defined to be the sum of all its entries, and denoted by $|\pi|$.

Let q be an indeterminate. The q-integer is defined by $[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1}$. We also define the q-factorial $[n]_{q}!:=[1]_{q} \cdot[2]_{q} \cdot[3]_{q} \ldots[n]_{q}$, and the q-hyperfactorial $\mathrm{H}_{q}(n):=[0]_{q}!\cdot[1]_{q}!\cdot[2]_{q}!\ldots[n-1]_{q}!$. MacMahon's classical theorem [29] states that

$$
\begin{equation*}
\sum_{\pi} q^{|\pi|}=\frac{\mathrm{H}_{q}(a) \mathrm{H}_{q}(b) \mathrm{H}_{q}(c) \mathrm{H}_{q}(a+b+c)}{\mathrm{H}_{q}(a+b) \mathrm{H}_{q}(b+c) \mathrm{H}_{q}(c+a)} \tag{1.1}
\end{equation*}
$$

where the sum on the left-hand side is taken over all plane partitions π fitting in an $a \times b \times c$ box.

The $q=1$ specialization of MacMahon's theorem is equivalent to the fact that the number of lozenge tilings of the hexagon $\operatorname{Hex}(a, b, c)$ is equal to

$$
\begin{equation*}
\frac{\mathrm{H}(a) \mathrm{H}(b) \mathrm{H}(c) \mathrm{H}(a+b+c)}{\mathrm{H}(a+b) \mathrm{H}(b+c) \mathrm{H}(c+a)}, \tag{1.2}
\end{equation*}
$$

where $\mathrm{H}(n)=\mathrm{H}_{1}(n)=0!1!\ldots(n-1)$! is the ordinary hyperfactorial. This consequence of MacMahon's theorem inspired a large body of work, focusing on enumeration of lozenge tilings of hexagons with defects (see e.g. [2,3,8,7,9,11,13,6,17], or the references in [31,32] for more extensive lists). Put differently, MacMahon's theorem gives a q-enumeration of lozenge tilings of a semi-regular hexagon. However, such q-enumerations are rare in the domain of enumeration of lozenge tilings. Together with the related work [24], this paper presents such a rare q-enumeration.

In 1999, James Propp [31] published a list of 32 open problems in the field of enumeration of tilings (equivalently, perfect matchings). Problem 3 on this list asks for the number of lozenge of tilings of a hexagon of side-lengths ${ }^{2} 2 n+3,2 n, 2 n+3,2 n, 2 n+3,2 n$,

[^1]
https://daneshyari.com/en/article/4624454

Download Persian Version:
https://daneshyari.com/article/4624454

Daneshyari.com

[^0]: E-mail address: tlai@umn.edu.

[^1]: 1 The regions considered in our paper are always finite connected regions on the triangular lattice.
 2 From now on, we always list the side-lengths of a hexagon in clockwise order, starting from the northwest side.

