Context-free grammars for permutations and increasing trees

William Y.C. Chen ${ }^{\text {a }}$, Amy M. Fu ${ }^{\text {b }}$
${ }^{\text {a }}$ Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China
${ }^{\text {b }}$ Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

A R T I C L E I N F O

Article history:

Received 19 June 2016
Accepted 25 July 2016
Available online 16 August 2016
Dedicated to the Memory of Professor Dominique Dumont

MSC:

05A15
05A19

Keywords:

Context-free grammar
Eulerian grammar
Grammatical labeling
Increasing tree
Exterior peak of a permutation Stirling permutation

Abstract

We introduce the notion of a grammatical labeling to describe a recursive process of generating combinatorial objects based on a context-free grammar. By labeling the ascents and descents of Stirling permutations, we obtain a grammar for the second-order Eulerian polynomials. Using the grammar for 0-1-2 increasing trees given by Dumont, we obtain a grammatical derivation of the generating function of the André polynomials obtained by Foata and Schützenberger. We also find a grammar for the number $T(n, k)$ of permutations on $[n]=\{1,2, \ldots, n\}$ with k exterior peaks. We demonstrate that Gessel's formula for the generating function of $T(n, k)$ can be deduced from this grammar. From a grammatical point of view, it is easily seen that the number of the permutations on [n] with k exterior peaks equals the number of increasing trees on $\{0,1,2, \ldots, n\}$ with $2 k+1$ vertices of even degree. We present a combinatorial proof of this fact, which is in the spirit of the recursive construction of the correspondence between even increasing trees and up-down permutations, due to Kuznetsov, Pak and Postnikov.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In this paper, a context-free grammar G over a set $V=\{x, y, z, \ldots$,$\} of variables is a$ set of substitution rules replacing a variable in V by a Laurent polynomial of variables in V. For a context-free grammar G over V, the formal derivative D (introduced in [2]) with respect to G is defined as a linear operator acting on Laurent polynomials with variables in V such that each substitution rule is treated as the common differential rule that satisfies the following relations,

$$
\begin{aligned}
& D(u+v)=D(u)+D(v), \\
& D(u v)=D(u) v+u D(v) .
\end{aligned}
$$

For a constant c, we have $D(c)=0$. Clearly, the Leibniz formula is also valid:

$$
D^{n}(u v)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(u) D^{n-k}(v)
$$

Since $D\left(w w^{-1}\right)=0$, we have

$$
D\left(w^{-1}\right)=-\frac{D(w)}{w^{2}}
$$

A formal derivative D is also associated with an exponential generating function. For a Laurent polynomial w of variables in V, let

$$
\operatorname{Gen}(w, t)=\sum_{n \geq 0} D^{n}(w) \frac{t^{n}}{n!}
$$

Then we have the following relations:

$$
\begin{align*}
\operatorname{Gen}^{\prime}(w, t) & =\operatorname{Gen}(D(w), t), \tag{1.1}\\
\operatorname{Gen}(u+v, t) & =\operatorname{Gen}(u, t)+\operatorname{Gen}(v, t), \tag{1.2}\\
\operatorname{Gen}(u v, t) & =\operatorname{Gen}(u, t) \operatorname{Gen}(v, t), \tag{1.3}
\end{align*}
$$

where u, v and w are Laurent polynomials of variables in V and $\operatorname{Gen}^{\prime}(w, t)$ stands for the derivative of $\operatorname{Gen}(w, t)$ with respect to t.

To illustrate the connection between context-free grammars and combinatorial structures, we recall the following grammar introduced by Dumont [4]:

$$
\begin{equation*}
G: \quad x \rightarrow x y, \quad y \rightarrow x y \tag{1.4}
\end{equation*}
$$

He showed that it generates the Eulerian polynomials $A_{n}(x)$. Let S_{n} denote the set of permutations on $[n]=\{1,2, \ldots, n\}$. For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in S_{n}$, an index

https://daneshyari.com/en/article/4624455

Download Persian Version:
https://daneshyari.com/article/4624455

Daneshyari.com

[^0]: E-mail addresses: chenyc@tju.edu.cn (W.Y.C. Chen), fu@nankai.edu.cn (A.M. Fu).
 http://dx.doi.org/10.1016/j.aam.2016.07.003
 0196-8858/© 2016 Elsevier Inc. All rights reserved.

