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Let k, d, λ � 1 be integers with d � λ. Let m(k, d, λ)
be the maximum positive integer n such that every set of 
n points (not necessarily in general position) in Rd has 
the property that the convex hulls of all k-sets have a 
common transversal (d −λ)-plane. It turns out that m(k, d, λ)
is strongly connected with other interesting problems, for 
instance, the chromatic number of Kneser hypergraphs and 
a discrete version of Rado’s centerpoint theorem. In the same 
spirit, we introduce a natural discrete version m∗ of m by 
considering the existence of complete Kneser transversals. We 
study the relation between them and give a number of lower 
and upper bounds of m∗ as well as the exact value in some 
cases. The main ingredient for the proofs are Radon’s partition 
theorem as well as oriented matroids tools. By studying 
the alternating oriented matroid we obtain the asymptotic 
behavior of the function m∗ for the family of cyclic polytopes.
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1. Introduction

Let k, d, λ � 1 be integers with both d, k � λ. Consider the function m(k, d, λ), defined 
to be the maximum positive integer n such that every set of n points (not necessarily 
in general position) in Rd has the property that the convex hulls of all k-sets have a 
common transversal (d − λ)-plane.

In [1], the following inequalities were obtained

d− λ + k +
⌈
k

λ

⌉
− 1 � m(k, d, λ) < d + 2(k − λ) + 1. (1)

An interesting feature of the value of m(k, d, λ) is its strong connection with the chro-
matic number of Kneser hypergraphs [4,5] as well as with the Rado’s centerpoint theorem 
[7]. Indeed, for the former it is proved in [1] that

if m(k, d, λ) < n, then d− λ + 1 < χ
(
KGλ+1(n, k)

)
.

For the latter, recall that the well-known Rado’s centerpoint theorem [7] states that if 
X is a bounded measurable set in Rd then there exists a point x ∈ R

d such that

measure (P ∩X) � measure (X)
d + 1

for each half-space P that contains x (see also [6] for the case d = 2).
Independently Bukh and Matoušek [3, Section 6] and Arocha, Bracho, Montejano 

and Ramírez-Alfonsín in [1] consider the following generalization of a discrete version of 
Rado’s centerpoint theorem. Let n, d, λ � 1 be integers with d � λ and let

τ(n, d, λ) def= the maximum positive integer τ such that for any collection X of n points 
in Rd, there is a (d −λ)-plane LX such that any closed half-space H through LX contains 
at least τ points.

By the hyperplane separation theorem we have that n − τ(n, d, λ) + 1 is equal to the 
minimum positive integer k such that for any collection X of n points in Rd there is a 
common transversal (d − λ)-plane to the convex hulls of all k-sets, which is essentially 
m(k, d, λ). Therefore, any improvement to the lower or upper bounds for m(k, d, λ) will 
give important insight on the above interesting problem.

The purpose of this paper is to introduce and study a discrete version of the function 
m(k, d, λ) which perhaps will allow us to improve lower or upper bounds for m(k, d, λ). 
Let k, d, λ � 1 be integers with k, d � λ and let X ⊂ R

d be a finite set. We call L a 
Kneser transversal of X if it is a (d −λ)-plane transversal to the convex hulls of all k-sets 
of X. If in addition L contains (d − λ) + 1 points of X, then L is a complete Kneser 
(d − λ)-transversal. Let us define
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