An inequality for multiple convolutions with respect to Dirichlet probability measure

Arcadii Z. Grinshpan
Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States

A R T I C L E I N F O

Article history:

Received 14 June 2016
Received in revised form 12 August 2016
Accepted 15 August 2016
Available online 29 August 2016

$M S C$:

26D15
33B15
33 E 15
Keywords:
Convolutions
Weighted norm inequalities
Euler's integrals
Dirichlet distribution
Dirichlet averages
Hypergeometric functions

Abstract

A sharp multiple convolution inequality with respect to Dirichlet probability measure on the standard simplex is presented. Its discrete version in terms of the negative binomial coefficients is proved as well. The new bounds for the Dirichlet distribution and iterated convolutions are obtained as the consequences of the main result. Also some binomial, exponential, and generalized hypergeometric applications are discussed. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the paper, we focus on the sharp integral inequalities for weighted convolutions of complex-valued functions and their discrete versions. Being generated by the seminorm problem for pairs of power series these inequalities are used for many applications

[^0][10-12]. We extend the earlier results for weighted convolutions of two functions on a finite interval to a multiple convolution inequality with respect to Dirichlet probability measure on the standard simplex [16,20]. Also we obtain the discrete version of this convolution inequality as a binomial solution to the general seminorm problem for power series. The limit exponential version is presented as well. The new bounds for the Dirichlet distribution and iterated convolutions are obtained as the consequences of the main result. Also some generalized hypergeometric and binomial applications are discussed. All the cases of equality are described. The discrete and integro-polynomial predecessors of the obtained results are given in $[8,10]$. We mention that weighted multiple convolution inequalities are of increasing importance in various fields of mathematics, statistics, physics, and biology.

We use the standard hypergeometric notation (see, e.g., [6, Chs. 2, 6]). The Pochhammer symbol $(\alpha)_{n}$ stands for the shifted factorial:

$$
\begin{equation*}
(\alpha)_{n}=\alpha(\alpha+1) \cdots(\alpha+n-1) \text { for } n \geq 1 \text { and }(\alpha)_{0}=1 \tag{1}
\end{equation*}
$$

For any $j, k=0,1, \ldots$, the generalized hypergeometric function ${ }_{j} F_{k}$ is defined by the power series:

$$
\begin{equation*}
{ }_{j} F_{k}\left(\mu_{1}, \ldots, \mu_{j} ; \nu_{1}, \ldots, \nu_{k} ; z\right)=\sum_{n=0}^{\infty} \frac{\prod_{1 \leq l \leq j}\left(\mu_{l}\right)_{n}}{\prod_{1 \leq l \leq k}\left(\nu_{l}\right)_{n}} \cdot \frac{z^{n}}{n!}, \tag{2}
\end{equation*}
$$

provided that $\left(\nu_{l}\right)_{n} \neq 0(n \geq 1, l \leq k)$.
For a given power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\alpha>0$, the α-convolution of f denoted by $f_{* \alpha}$ is defined by the formula:

$$
\begin{equation*}
f_{* \alpha}(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{(\alpha)_{n}} z^{n} \tag{3}
\end{equation*}
$$

Some properties of functions (2) hold for arbitrary α-convolutions [10]. As usual, $B\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and $\Gamma(z)$ stand for the beta function of $m \geq 2$ variables and gamma function, respectively [4]:

$$
\begin{align*}
& B\left(\alpha_{1}, \ldots, \alpha_{m}\right)=\int_{\mathbb{E}_{m-1}}\left(\prod_{j=1}^{m-1} t_{j}^{\alpha_{j}-1}\right)\left(1-\sum_{j=1}^{m-1} t_{j}\right)^{\alpha_{m}-1} d t_{1} \cdots d t_{m-1} \\
& =\frac{\prod_{j=1}^{m} \Gamma\left(\alpha_{j}\right)}{\Gamma\left(\sum_{j=1}^{m} \alpha_{j}\right)}\left(\alpha_{j}>0, j \leq m\right), \Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t \tag{4}
\end{align*}
$$

where \mathbb{E}_{m-1} is the standard simplex in \mathbb{R}^{m-1} :

$$
\mathbb{E}_{m-1}=\left\{\left(t_{1}, \ldots, t_{m-1}\right) \in \mathbb{R}^{m-1}: t_{1}, \ldots, t_{m-1} \geq 0 ; t_{1}+\cdots+t_{m-1} \leq 1\right\}
$$

https://daneshyari.com/en/article/4624457

Download Persian Version:
https://daneshyari.com/article/4624457

Daneshyari.com

[^0]: E-mail address: agrinshp@usf.edu.

