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Let (W, S) be a Coxeter system and write PW (q) for 
its Poincaré series. Lusztig has shown that the quotient 
PW (q2)/PW (q) is equal to a certain power series LW (q), de-
fined by specializing one variable in the generating function 
recording the lengths and absolute lengths of the involutions 
in W . The simplest inductive method of proving this result 
for finite Coxeter groups suggests a natural bivariate general-
ization LJ

W (s, q) ∈ Z[[s, q]] depending on a subset J ⊂ S. This 
new power series specializes to LW (q) when s = −1 and is 
given explicitly by a sum of rational functions over the involu-
tions which are minimal length representatives of the double 
cosets of the parabolic subgroup WJ in W . When W is an 
affine Weyl group, we consider the renormalized power series 
TW (s, q) = LJ

W (s, q)/LW (q) with J given by the generating 
set of the corresponding finite Weyl group. We show that 
when W is an affine Weyl group of type A, the power series 
TW (s, q) is actually a polynomial in s and q with nonnegative 
coefficients, which turns out to be a q-analogue recently stud-
ied by Cigler of the Chebyshev polynomials of the first kind, 
arising in a completely different context.
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1. Introduction

1.1. Background and motivation

Let (W, S) be a Coxeter system with length function � : W → N. The Poincaré series
of (W, S) is the formal power series (in an indeterminate q) given by

PW (q) =
∑
w∈W

q�(w) ∈ Z[[q]].

This power series is well-defined if and only if the rank of (W, S) is finite, and in this 
work, therefore, we require all Coxeter systems (W, S) to have |S| < ∞. If W is finite 
then PW (q) is obviously a polynomial, and in general PW (q) is always a rational power 
series; see [15,28].

Lusztig [21,22] has introduced an interesting analogue of the Poincaré series defined 
in terms of the twisted involutions in a Coxeter group, and our main object of study 
here is a natural bivariate generalization of this power series. To motivate its definition, 
we review some relevant information from [21,22].

To begin, let Aut(W, S) denote the group of automorphisms of W preserving S, and 
fix an involution (that is, a self-inverse automorphism) ∗ ∈ Aut(W, S). We denote the 
action of ∗ on elements w ∈ W by w∗, and write

I∗ = I∗(W ) def= {w ∈ W : w−1 = w∗}

for the corresponding set of twisted involutions in W . The “twisted” analogue of PW (q)
is the formal power series

LW,∗(q) =
∑
w∈I∗

q�(w)
(

q−1
q+1

)�∗(w)
∈ Z[[q]] (1.1)

where on the right side �∗ denotes the twisted absolute length function defined by Hultman 
in [14], which is characterized explicitly as the unique map I∗ → N such that

(a) �∗(1) = 0;
(b) �∗ is constant on ∗-twisted conjugacy classes, i.e., �∗(sws∗) = �∗(w) for all s ∈ S;
(c) �∗(ws) − �∗(w) = �(ws) − �(w) whenever s ∈ S and w ∈ I∗ are such that ws ∈ I∗.

Note in (c) that ws ∈ I∗ if and only if ws = s∗w. The function �∗ is the same as the 
map denoted φ in [21,22]. Lusztig’s paper [21, §5.8] appears to be the first place in the 
literature where the power series (1.1) is considered, and for this reason we denote it by 
the letter L.
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