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We prove a double-sum analog of an identity known to 
Kronecker and then express it in terms of functions studied 
by Appell and Kronecker’s student Lerch, in so doing we show 
that the double-sum analog is of mixed mock modular form. 
We also give related symmetric generalizations.
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0. Notation

Let q be a nonzero complex number with |q| < 1 and define C∗ := C − {0}. Recall

(x)n = (x; q)n :=
n−1∏
i=0

(1 − qix), (x)∞ = (x; q)∞ :=
∏
i≥0

(1 − qix),
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and j(x; q) := (x)∞(q/x)∞(q)∞ =
∞∑

n=−∞
(−1)nq

(n
2
)
xn,

where in the last line the equivalence of product and sum follows from Jacobi’s triple 
product identity. Here a and m are integers with m positive. Define

Ja,m := j(qa; qm), Jm := Jm,3m =
∏
i≥1

(1 − qmi), and Ja,m := j(−qa; qm).

We will use the following definition of an Appell–Lerch function [1,4,8,14]:

m(x, q, z) := 1
j(z; q)

∞∑
r=−∞

(−1)rq
(r
2
)
zr

1 − qr−1xz
. (0.1)

1. Introduction

The following identity was known to Kronecker [6], [7, pp. 309–318], see also A. Weil’s 
monograph for Kronecker’s proof [12, pp. 70–71]; however, Kronecker’s identity is also 
a special case of Ramanujan’s 1ψ1-summation. For x, y ∈ C

∗ where |q| < |x| < 1 and y
neither zero or an integral power of q

∑
r∈Z

xr

1 − yqr
= (q)2∞(xy, q/xy; q)∞

(x, q/x, y, q/y; q)∞
. (1.1)

If we place the additional restriction |q| < |y| < 1, we have a more symmetric form,

( ∑
r,s≥0

−
∑
r,s<0

)
qrsxrys = J3

1 j(xy; q)
j(x; q)j(y; q) . (1.2)

A natural question is what are the higher-dimensional generalizations of (1.1)?
In [4], we expanded Hecke-type double sums in terms of Appell–Lerch functions and 

theta functions. As an example, we showed for generic x, y ∈ C
∗,

( ∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sxrysq

(r
2
)
+2rs+

(s
2
)

(1.3)

= j(y; q)m
(q2x

y2 , q3,−1
)

+ j(x; q)m
(q2y

x2 , q3,−1
)
− yJ3

3 j(−x/y; q)j(q2xy; q3)
J0,3j(−qy2/x; q3)j(−qx2/y; q3)

.

In [9], we demonstrated how identity (1.2) can by used to determine directly the 
theta-quotient term of Hecke-type doubles such as in (1.3). Indeed, one can actually see 
the right-hand side of (1.2) within the extreme right-hand side of (1.3). In trying to 
determine the modularity of so-called Hecke-type triple-sums [5], i.e. sums of the form
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