Generalized Pascal triangle for binomial coefficients of words

Julien Leroy ${ }^{1}$, Michel Rigo ${ }^{*}$, Manon Stipulanti ${ }^{2}$
Université de Liège, Institut de mathématique, Allée de la découverte 12 (B37), 4000 Liège, Belgium

A R T I C L E I N F O

Article history:

Received 1 March 2016
Received in revised form 23 April 2016
Accepted 25 April 2016
Available online 4 May 2016

MSC:

primary 28 A 80
secondary $28 \mathrm{~A} 78,11 \mathrm{~B} 85,68 \mathrm{R} 15$

Abstract

We introduce a generalization of Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a word appears as a subsequence of another finite word. Similarly to the Sierpiński gasket that can be built as the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from Pascal triangle modulo 2, we describe and study the first properties of the subset of $[0,1] \times[0,1]$ associated with this extended Pascal triangle modulo a prime p.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Pascal triangle and the corresponding Sierpiński gasket are well studied objects (see, for instance, [15] for a survey). They exhibit self-similarity features and have connections with dynamical systems, cellular automata, number theoretic questions and automatic

[^0]sequences $[2,1,5,10,13]$. In this paper, we will consider a variation of these two objects by extending binomial coefficients to the free monoid A^{*} where A is a finite alphabet.

Let us start with basic combinatorial definitions. A finite word is simply a finite sequence of letters belonging to a finite set called alphabet. In combinatorics on words, one can introduce the binomial coefficient $\binom{u}{v}$ of two finite words u and v which is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). As an example, we consider two particular words over $\{0,1\}$ and

$$
\binom{101001}{101}=6
$$

Indeed, if we index the letters of the first word $u_{1} u_{2} \cdots u_{6}=101001$, we have

$$
u_{1} u_{2} u_{3}=u_{1} u_{2} u_{6}=u_{1} u_{4} u_{6}=u_{1} u_{5} u_{6}=u_{3} u_{4} u_{6}=u_{3} u_{5} u_{6}=101 .
$$

Observe that this concept is a natural generalization of the binomial coefficients of integers. For a single letter alphabet $\{a\}$, we have

$$
\begin{equation*}
\binom{a^{m}}{a^{n}}=\binom{m}{n}, \quad \forall m, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

where a^{m} denotes the concatenation of m letters a. For more on these binomial coefficients, see for instance [11, Chap. 6].

In this paper, we are interested in Pascal triangle obtained when considering binomial coefficients of words. To define such a triangular array, we will consider all the words over a finite alphabet and we order them by genealogical ordering (i.e., first by length, then by the classical lexicographic ordering for words of the same length assuming $0<1$). For the sake of simplicity, we will mostly discuss the case of a 2-letter alphabet $\{0,1\}$ and to relate these words to base- 2 expansions of integers, we will assume without loss of generality that the non-empty words start with 1 . (If leading zeroes were allowed, then different words could represent the same integer.)

Definition 1. We let $\operatorname{rep}_{2}(n)$ denote the greedy base-2 expansion of $n \in \mathbb{N}_{>0}$ starting with 1 where the notation $\mathbb{N}_{>0}$ stands for the set of all positive integers. We set rep ${ }_{2}(0)$ to be the empty word denoted by ε. Let $L=\{\varepsilon\} \cup 1\{0,1\}^{*}$ be the set of base- 2 expansions of the integers. We let L_{n} denote the set of words of length at most n belonging to L, i.e.,

$$
L_{n}=\left(\{\varepsilon\} \cup 1\{0,1\}^{*}\right) \cap\{0,1\}^{\leq n} .
$$

Note that $\# L_{n}=2^{n}$ for all $n \geq 0$.

The first few values in the generalized Pascal triangle T that we will deal with are given in Table 1. These values correspond to the words $\varepsilon, 1,10,11,100,101,110,111$.

https://daneshyari.com/en/article/4624468

Download Persian Version:
https://daneshyari.com/article/4624468

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: J.Leroy@ulg.ac.be (J. Leroy), M.Rigo@ulg.ac.be (M. Rigo), M.Stipulanti@ulg.ac.be (M. Stipulanti).
 ${ }^{1}$ J. Leroy is a FNRS post-doctoral fellow.
 ${ }^{2}$ M. Stipulanti is supported by a FRIA grant R.FNRS.3791.

