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1. Introduction

We assume that the reader is familiar with fundamental definitions in matroid and
graph theory. All definitions in matroid theory that are used but not defined in the
paper follow from Oxley’s book [3]. For a graph G, a set X C E(G) is a cycle if G| X is
a connected 2-regular graph, bicircular lift matroids are a class of matroids defined on
the edge set of a graph. For a given graph G, the circuits of its bicircular lift matroid
L(G) are the edge sets of those subgraphs of G that contain at least two cycles, and
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are minimal with respect to this property. That is, the circuits of L(G) consist of the
edge sets of two edge-disjoint cycles with at most one common vertex, or three internally
disjoint paths between a pair of distinct vertices.

Bicircular lift matroids are a special class of lift matroids that arises from biased
graphs, where biased graphs and its lift matroids were introduced by Zaslavsky in [8,9].
Let BL denote the class of bicircular lift matroids. For each cycle C of G, since L(G)/C
is graphic and most graphic matroids are not in BL by the following Lemma 4.4, this
class BL is not minor-closed. But the union of BL and the class of graphic matroids is
a minor-closed class. Let BL denote this class. Irene Pivotto [4] conjectured

Conjecture 1.1. The class BL has a finite list of excluded minors.
In this paper, we prove that the conjecture is true. In fact, we prove a stronger result.
Theorem 1.2. Let M be an excluded minor of BL. Then

e either M is a direct sum of the uniform matroid Uz 4 and a loop, or
o M is 3-connected with r(M) < 11 and with |E(M)| < 224.

In the rest of paper, we always let M be an excluded minor of BL. The paper is
organized as follows. Some related definitions and basic results are given in Section 2.
In Section 3, we prove that when M is not connected, M is a direct sum of the uniform
matroid Uz 4 and a loop. In Section 4, we prove that if M is connected then M is
3-connected. In Section 5, we prove that if M is 3-connected then r(M) < 11 and
|E(M)| < 224.

Unfortunately, the number of matroids with rank at most 11 and size at most 224 is
massive. There are too many matroids! The bound is outside what we are able to check
with a computer. The search space is just too large.

2. Preliminaries

Let G be a graph. Set |G| := |[V(G)|. For a vertex v of G, let stg(v) denote the
set of all edges adjacent with v. An edge of G is a link if its end-vertices are distinct;
otherwise it is a loop. Let loop(G) be the set consisting of loops of G. We say that G
is 2-edge-connected if each edge of G is contained in some cycle. A graph obtained from
graph G with some edges of G replaced by internally disjoint paths is a subdivision of G.

Let e, f € E(G). If {e, f} is a cycle, then e and f are a parallel pair. A parallel class
of G is a maximal subset P of F(G) such that any two members of P are a parallel
pair and no member is a loop. Moreover, if |P| > 2 then P is non-trivial; otherwise P is
trivial. Let si(G) denote the graph obtained from G by deleting all loops and all but one
distinguished element of each non-trivial parallel class. Obviously, the graph we obtain
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