

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

A new bijection relating q-Eulerian polynomials

Ange Bigeni

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

ARTICLE INFO

Article history: Received 10 July 2015 Received in revised form 24 August 2016 Accepted 24 August 2016 Available online 10 September 2016

MSC: 05A05 05A19

Keywords: q-Eulerian polynomials Descents Ascents Major index Excedances Inversions

ABSTRACT

On the set of permutations of a finite set, we construct a bijection which maps the 3-vector of statistics (maj – exc, des, exc) to a 3-vector (maj₂, des_2 , inv₂) associated with the *q*-Eulerian polynomials introduced by Shareshian and Wachs (2014) [10].

© 2016 Elsevier Inc. All rights reserved.

霐

APPLIED MATHEMATICS

CrossMark

0. Notations

For all pair of integers (n, m) such that n < m, the set $\{n, n+1, \ldots, m\}$ is indifferently denoted by [n, m], [n - 1, m], [n, m + 1[or [n - 1, m + 1[.

The set of positive integers $\{1, 2, 3, \ldots\}$ is denoted by $\mathbb{N}_{>0}$.

E-mail address: bigeni@math.univ-lyon1.fr.

 $[\]label{eq:http://dx.doi.org/10.1016/j.aam.2016.08.005} 0196-8858/©$ 2016 Elsevier Inc. All rights reserved.

For all integer $n \in \mathbb{N}_{>0}$, we denote by [n] the set [1, n] and by \mathfrak{S}_n the set of the permutations of [n]. By abuse of notation, we assimilate every $\sigma \in \mathfrak{S}_n$ with the word $\sigma(1)\sigma(2)\ldots\sigma(n)$.

If a set $S = \{n_1, n_2, \dots, n_k\}$ of integers is such that $n_1 < n_2 < \dots < n_k$, we sometimes use the notation $S = \{n_1 < n_2 < \dots < n_k\}$.

1. Introduction

Let *n* be a positive integer and $\sigma \in \mathfrak{S}_n$. A descent (resp. excedance point) of σ is an integer $i \in [n-1]$ such that $\sigma(i) > \sigma(i+1)$ (resp. $\sigma(i) > i$). The set of descents (resp. excedance points) of σ is denoted by $\text{DES}(\sigma)$ (resp. $\text{EXC}(\sigma)$) and its cardinal by $\text{des}(\sigma)$ (resp. $\text{exc}(\sigma)$). The integers $\sigma(i)$ with $i \in \text{EXC}(\sigma)$ are called excedance values of σ .

It is due to MacMahon [5] and Riordan [7] that

$$\sum_{\sigma\in\mathfrak{S}_n}t^{\mathrm{des}(\sigma)}=\sum_{\sigma\in\mathfrak{S}_n}t^{\mathrm{exc}(\sigma)}=A_n(t),$$

where $A_n(t)$ is the *n*-th Eulerian polynomial [1]. A statistic equidistributed with des or exc is said to be *Eulerian*. The statistic ides defined by $ides(\sigma) = des(\sigma^{-1})$ obviously is Eulerian.

The major index of a permutation $\sigma \in \mathfrak{S}_n$ is defined as

$$\operatorname{maj}(\sigma) = \sum_{i \in \operatorname{DES}(\sigma)} i.$$

It is also due to MacMahon that

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{maj}(\sigma)} = \prod_{i=1}^n (1-q^i)/(1-q).$$

A statistic equidistributed with maj is said to be *Mahonian*. Among Mahonian statistics is the statistic inv, defined by $inv(\sigma) = |INV(\sigma)|$ where $INV(\sigma)$ is the set of *inversions* of a permutation $\sigma \in \mathfrak{S}_n$, *i.e.* the pairs of integers $(i, j) \in [n]^2$ such that i < j and $\sigma(i) > \sigma(j)$.

In [10], Shareshian and Wachs consider analogous versions (introduced in [6]) of the above statistics: let $\sigma \in \mathfrak{S}_n$, the set of 2-descents (resp. 2-inversions) of σ is defined as

$$DES_2(\sigma) = \{i \in [n-1] : \sigma(i) > \sigma(i+1) + 1\}$$

(resp.

$$INV_2(\sigma) = \{1 \le i < j \le n : \sigma(i) = \sigma(j) + 1\})$$

and its cardinal is denoted by $des_2(\sigma)$ (resp. $inv_2(\sigma)$).

Download English Version:

https://daneshyari.com/en/article/4624499

Download Persian Version:

https://daneshyari.com/article/4624499

Daneshyari.com