A new bijection relating q-Eulerian polynomials

Ange Bigeni

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

A R T I C L E I N F O

Article history:

Received 10 July 2015
Received in revised form 24 August 2016
Accepted 24 August 2016
Available online 10 September 2016
MSC:
05A05
05A19

Keywords:
q-Eulerian polynomials
Descents
Ascents
Major index
Excedances
Inversions

A B S T R A C T

On the set of permutations of a finite set, we construct a bijection which maps the 3 -vector of statistics (maj - exc, des, exc) to a 3 -vector $\left(\mathrm{maj}_{2}, \widetilde{\operatorname{des}_{2}}, \mathrm{inv}_{2}\right)$ associated with the q-Eulerian polynomials introduced by Shareshian and Wachs (2014) [10].
© 2016 Elsevier Inc. All rights reserved.

0. Notations

For all pair of integers (n, m) such that $n<m$, the set $\{n, n+1, \ldots, m\}$ is indifferently denoted by $[n, m],] n-1, m]$, $[n, m+1[$ or $] n-1, m+1[$.

The set of positive integers $\{1,2,3, \ldots\}$ is denoted by $\mathbb{N}_{>0}$.

[^0]For all integer $n \in \mathbb{N}_{>0}$, we denote by $[n]$ the set $[1, n]$ and by \mathfrak{S}_{n} the set of the permutations of $[n]$. By abuse of notation, we assimilate every $\sigma \in \mathfrak{S}_{n}$ with the word $\sigma(1) \sigma(2) \ldots \sigma(n)$.

If a set $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ of integers is such that $n_{1}<n_{2}<\ldots<n_{k}$, we sometimes use the notation $S=\left\{n_{1}<n_{2}<\ldots<n_{k}\right\}$.

1. Introduction

Let n be a positive integer and $\sigma \in \mathfrak{S}_{n}$. A descent (resp. excedance point) of σ is an integer $i \in[n-1]$ such that $\sigma(i)>\sigma(i+1)$ (resp. $\sigma(i)>i)$. The set of descents (resp. excedance points) of σ is denoted by $\operatorname{DES}(\sigma)($ resp. $\operatorname{EXC}(\sigma))$ and its cardinal by $\operatorname{des}(\sigma)$ (resp. $\operatorname{exc}(\sigma)$). The integers $\sigma(i)$ with $i \in \operatorname{EXC}(\sigma)$ are called excedance values of σ.

It is due to MacMahon [5] and Riordan [7] that

$$
\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des}(\sigma)}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc}(\sigma)}=A_{n}(t)
$$

where $A_{n}(t)$ is the n-th Eulerian polynomial [1]. A statistic equidistributed with des or exc is said to be Eulerian. The statistic ides defined by $\operatorname{ides}(\sigma)=\operatorname{des}\left(\sigma^{-1}\right)$ obviously is Eulerian.

The major index of a permutation $\sigma \in \mathfrak{S}_{n}$ is defined as

$$
\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{DES}(\sigma)} i
$$

It is also due to MacMahon that

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)}=\prod_{i=1}^{n}\left(1-q^{i}\right) /(1-q)
$$

A statistic equidistributed with maj is said to be Mahonian. Among Mahonian statistics is the statistic inv, defined by $\operatorname{inv}(\sigma)=|\operatorname{INV}(\sigma)|$ where $\operatorname{INV}(\sigma)$ is the set of inversions of a permutation $\sigma \in \mathfrak{S}_{n}$, i.e. the pairs of integers $(i, j) \in[n]^{2}$ such that $i<j$ and $\sigma(i)>\sigma(j)$.

In [10], Shareshian and Wachs consider analogous versions (introduced in [6]) of the above statistics: let $\sigma \in \mathfrak{S}_{n}$, the set of 2-descents (resp. 2-inversions) of σ is defined as

$$
\operatorname{DES}_{2}(\sigma)=\{i \in[n-1]: \sigma(i)>\sigma(i+1)+1\}
$$

(resp.

$$
\left.\operatorname{INV}_{2}(\sigma)=\{1 \leq i<j \leq n: \sigma(i)=\sigma(j)+1\}\right)
$$

and its cardinal is denoted by $\operatorname{des}_{2}(\sigma)\left(\operatorname{resp} . \operatorname{inv}_{2}(\sigma)\right)$.

https://daneshyari.com/en/article/4624499

Download Persian Version:
https://daneshyari.com/article/4624499

Daneshyari.com

[^0]: E-mail address: bigeni@math.univ-lyon1.fr.

