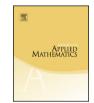


Contents lists available at ScienceDirect

Advances in Applied Mathematics



www.elsevier.com/locate/yaama

On the Lyndon dynamical system

Florent Nguema Ndong

Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon

ARTICLE INFO

Article history: Received 30 March 2015 Accepted 15 February 2016 Available online 8 March 2016

MSC: 37B10 05C99 11A63

Keywords: Lyndon words Negative basis β -expansions Dynamical system

ABSTRACT

Given a totally finite ordered alphabet \mathcal{A} , endowing the set of words over \mathcal{A} with the alternating lexicographic order (see [6]), we define a new class of Lyndon words. We study the fundamental properties of the associated symbolic dynamical systems called Lyndon system. We derive some fundamental properties of the beta-shift with negative base by relating it with the Lyndon system. We find, independently of W. Steiner's method (see [11]), the conditions for which a word is the $(-\beta)$ -expansion of $-\frac{\beta}{\beta+1}$ for some $\beta>1$.

 \odot 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the areas of combinatorics and computer sciences, a Lyndon word is a word which is lexicographically less than all its permutations. Roger Lyndon introduced them in 1954 on the standard name "lexicographic sequences". He used them to construct a basis for the homogeneous part of a given degree in Lie algebra (see [8,2]).

By definition, we call Lyndon word $x_1x_2x_3\cdots$ over a totally ordered alphabet all word which is lexicographically less than all of its suffixes.

$$x_1x_2\cdots x_{n-1}x_n\cdots <_{lex} x_kx_{k+1}\cdots x_nx_{n+1}\cdots$$

E-mail address: florentnn@yahoo.fr.

Consider a finite ordered alphabet $\mathcal{A}=\{0,1,\cdots,d\}$. We denote by $\mathcal{A}^{\mathbb{N}}$ the set of finite and infinite words over \mathcal{A} . Endowing $\mathcal{A}^{\mathbb{N}}$ with the alternate order on words (see [10,6]), we can define Lyndon word using this new order. We call them alternate Lyndon words. The definition given in [10] generalizes Lyndon words. To each Lyndon word we attach a symbolic dynamical system. If the entropy of such a system is positive (shall we say $\log \beta > 0$), we show that the associated alternate Lyndon word is a $(-\beta)$ -representation of $-\frac{\beta}{\beta+1}$ (Proposition 3). When β tends to 1, the alternate Lyndon word tends to

where ϕ is a morphism on $\{0,1\}$ such that $\phi(0) = 1$ and $\phi(1) = 100$ (Theorem 1). We establish a link with expansions in negative bases. Indeed, for a fixed real $\beta > 1$, we can see the alternate order as a tool of controllability of the representations of numbers in base $-\beta$. In the negative expansion pioneering paper [6], it is proved that for some $\beta > 1$, the $(-\beta)$ -expansion of $-\frac{\beta}{\beta+1}$, $(d_i)_{i\geq 1}$ is such that all sub-word of a $(-\beta)$ -expansion $(x_i)_{i\geq 1}$ is greater than $(d_i)_{i\geq 1}$ in the sense of the alternate order. In particular, $(d_i)_{i\geq 1}$ is less than all of its sub-words (in the sense of the alternate order). Thanks to this link, we give the necessary and sufficient conditions for which a word over a finite totally ordered alphabet can be the $(-\beta)$ -expansion of $-\frac{\beta}{\beta+1}$ for some $\beta > 1$ (Theorem 3).

1.1. Definitions and generality

Definition 1. Let \mathcal{A} be a totally ordered alphabet endowed with an order "<". We call Lyndon word over \mathcal{A} with respect to the order "<", all word $x_1x_2x_3\cdots$ such that

$$x_1 x_2 x_3 \dots \le x_n x_{n+1} x_{n+2} \dots, \ \forall n, \tag{1}$$

with x_i in \mathcal{A} for all i.

- The word $x_1x_2x_3\cdots$ is said to be *strong Lyndon word* if in (1) all inequalities are strict.
- The Lyndon word $x_1x_2\cdots$ is weak if in (1) equality holds for some n.

$$x_1 x_2 x_3 x_4 \cdots = x_n x_{n+1} x_{n+2} \cdots.$$

Then, the weak Lyndon words over the alphabet A are periodic.

1.2. Ito and Sadahiro order

Let $\mathcal{A} = \{0, 1, \dots, d\}$ be an alphabet. Consider two words $x_1 x_2 \cdots x_n$ and $y_1 y_2 \cdots y_n$ on \mathcal{A} . We will say $x_1 x_2 \cdots x_n$ is less than $y_1 y_2 \cdots y_n$ in the sense of alternate order (and we note $x_1 x_2 \cdots x_n \prec y_1 y_2 \cdots y_n$) if there exists an integer $k \leq n$ such that for all i < k,

Download English Version:

https://daneshyari.com/en/article/4624514

Download Persian Version:

https://daneshyari.com/article/4624514

<u>Daneshyari.com</u>