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1. Introduction

In 1979, Kazdhan and Lusztig [16] introduced a family of polynomials, indexed by
pairs of elements in a Coxeter group W, which plays an important role in various areas
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of mathematics, including the algebraic geometry and topology of Schubert varieties and
representation theory (see, e.g., [1] p. 171 and the references cited there). These cele-
brated polynomials are now known as the Kazhdan—Lusztig polynomials of W (see, e.g.,
[1] or [14]). In 1987, Deodhar [7] developed an analogous theory for the parabolic setup.
Given any parabolic subgroup W; in a Coxeter system (W,S), Deodhar introduced
two Hecke algebra modules (one for each of the two roots ¢ and —1 of the polynomial
2?—(q—1)z —q) and two families of polynomials {P;"(q)}, vew s and {P; ;1 (q) by vew
indexed by pairs of elements of the set of minimal coset representatives W+. These poly-
nomials are the parabolic analogues of the Kazhdan-Lusztig polynomials: while they
are related to their ordinary counterparts in several ways (see, e.g., §2 and [7], Propo-
sition 3.5), they also play a direct role in several areas such as the geometry of partial
flag manifolds [15], the theory of Macdonald polynomials [12,13], tilting modules [24,25],
generalized Verma modules [5], canonical bases [10,28], the representation theory of the
Lie algebra gl,, [20], quantized Schur algebras [29], quantum groups [8], and physics (see,
e.g., [11], and the references cited there). The computation of these polynomials is a
very difficult task. Although a geometric interpretation for the (ordinary and parabolic)
polynomials exists (see [17] and [15]) in the case of Weyl groups and an algebraic in-
terpretation exists for the ordinary ones [9] for all Coxeter systems, there are very few
explicit formulas for them (see, e.g., [1], p. 172, and the references cited there).

The purpose of this work is to study the parabolic Kazhdan-Lusztig polynomials
for the quasi-minuscule quotients of Weyl groups. These quotients possess noteworthy
combinatorial and geometric properties (see, e.g., [18] and [27]). The parabolic Kazhdan—
Lusztig polynomials for the minuscule quotients have been computed in [19,2-4]. In this
work we turn our attention to the quasi-minuscule quotients that are not minuscule (also
known as (co-)adjoint quotients). More precisely, we obtain closed combinatorial formu-
las for the parabolic Kazhdan—Lusztig polynomials of type ¢ of these quotients for the
classical Weyl groups. Our results imply that these are always either zero or a monic
power of ¢ for all quasi-minuscule quotients, and that they are not combinatorial invari-
ants. For the parabolic Kazhdan—Lusztig polynomials of type —1 we conjecture explicit
combinatorial interpretations.

The organization of the paper is as follows. In Section 2 we recall some definitions,
notation and results that are used in the sequel. In Section 3 we give combinatorial
descriptions of the quasi-minuscule quotients of classical Weyl groups. In Section 4 we
give combinatorial formulas for the parabolic Kazhdan—Lusztig polynomials of type ¢ of
(co-)adjoint quotients of classical Weyl groups. Our results imply that these polynomials
are always either zero or a monic power of g for all quasi-minuscule quotients, and
that they are not combinatorial invariants. In Section 5 we derive some consequences
of our results for the classical Kazhdan—Lusztig polynomials. Finally, in Section 6 we
present our conjectured combinatorial interpretations for the parabolic Kazhdan—Lusztig
polynomials of type —1 of the (co-)adjoint quotients of classical Weyl groups, and the
evidence that we have in their favor.
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