

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Characterizing binary matroids with no P_9 -minor

APPLIED MATHEMATICS

霐

Guoli Ding^a, Haidong Wu^{b,*}

^a Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA
^b Department of Mathematics, University of Mississippi, University, MS, USA

ARTICLE INFO

Article history: Received 19 June 2015 Accepted 1 July 2015 Available online 16 July 2015

MSC: 05B35 05C83

Keywords: Binary matroids Minor 3-connected

ABSTRACT

In this paper, we give a complete characterization of binary matroids with no P_9 -minor. A 3-connected binary matroid M has no P_9 -minor if and only if M is a 3-connected regular matroid, a binary spike with rank at least four, one of the internally 4-connected non-regular minors of a special 16-element matroid Y_{16} , or a matroid obtained by 3-summing copies of the Fano matroid to a 3-connected cographic matroid $M^*(K_{3,n}), M^*(K'_{3,n}), M^*(K''_{3,n}), \text{ or } M^*(K''_{3,n}) (n \geq 2)$. Here the simple graphs $K'_{3,n}, K''_{3,n}$, and $K''_{3,n}$ are obtained from $K_{3,n}$ by adding one, two, or three edges in the color class of size three, respectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the class of binary matroids consists of all matroids without any $U_{2,4}$ -minor, and the class of regular matroids consists of matroids without any $U_{2,4}$, F_7 , or F_7^* -minor. Kuratowski's Theorem states that a graph is planar if and only if it has no minor that is isomorphic to $K_{3,3}$ or K_5 . These examples show that characterizing a class of graphs or matroids without certain minors is often of fundamental importance. We say that a matroid is *N*-free if it does not contain a minor that is isomorphic to N.

* Corresponding author.

http://dx.doi.org/10.1016/j.aam.2015.07.001 0196-8858/© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: ding@math.lsu.edu (G. Ding), hwu@olemiss.edu (H. Wu).

A 3-connected matroid M is said to be internally 4-connected if for any 3-separation of M, one side of the separation is either a triangle or a triad.

There is much interest in characterizing binary matroids without small 3-connected minors. For any 3-connected matroid N, since non-3-connected N-free matroids are precisely those that are constructed from 3-connected N-free matroids using 1- and 2-sum operations, in order to determine all N-free matroids, one only needs to determine all 3-connected N-free matroids. There is only one 3-connected binary matroid with six elements, namely, W_3 , where W_n denotes both the wheel graph with n-spokes and the cycle matroid of W_n . There are exactly two 7-element 3-connected binary matroids, F_7 and F_7^* . There are three 8-element 3-connected binary matroids, W_4 , S_8 , and AG(3,2), and there are eight 9-element 3-connected binary matroids: $M(K_{3,3})$, $M^*(K_{3,3})$, Prism, $M(K_5 \setminus e)$, P_9 , P_9^* , binary spike Z_4 and its dual Z_4^* .

E(M)	3-connected binary matroids
6	W_3
7	F_7, F_7^*
8	$W_4, S_8, AG(3,2)$
9	$M(K_{3,3}), M^*(K_{3,3}), M(K_5 \setminus e), Prism, P_9, P_9^*, Z_4, Z_4^*$

For each matroid N in the above list with fewer than nine elements, with the exception of AG(3, 2), the problem of characterizing 3-connected binary N-free matroids is completely solved. Since every 3-connected binary matroid having at least four elements has a W_3 -minor, the class of 3-connected binary matroids excluding W_3 contains only the trivial 3-connected matroids with at most three elements. Seymour in [12] determined all 3-connected binary matroids with no F_7 -minor (F_7^* -minor). Any such matroid is either regular or is isomorphic to F_7^* (F_7). In [9], Oxley characterized all 3-connected binary W_4 -free matroids. These are exactly $M(K_4)$, F_7 , F_7^* , binary spikes Z_r , Z_r^* , $Z_r \setminus t$, $Z_r \setminus y_r$ ($r \ge 4$), and the trivial 3-connected matroids with at most three elements. It is an easy corollary of Seymour's Splitter Theorem that F_7 , F_7^* , and AG(3, 2) are the only 3-connected binary non-regular matroids without any S_8 -minor. At this point, not much is known about AG(3, 2)-free matroids.

For each 9-element matroid on the above list there are some partial results. In an AMS Memoir [8], Mayhew, Royle, and Whittle characterized all internally 4-connected binary $M(K_{3,3})$ -free matroids. Mayhew and Royle [7], and independently Kingan and Lemos [5], determined all internally 4-connected binary Prism-free (therefore, $M(K_5 \setminus e)$ -free) matroids. These results are not complete characterizations of binary N-free matroids for the corresponding N because the 3-connected binary N-free matroids are yet to be determined. Since Z_4 has an AG(3, 2)-minor, characterizing binary Z_4 -free matroids is an even harder problem. Oxley [9] determined all 3-connected binary matroids that contain neither a P_{9} - nor P_{9}^* -minor.

Theorem 1.1. Let M be a binary matroid. Then M is 3-connected having no minor isomorphic to P_9 or P_9^* if and only if

Download English Version:

https://daneshyari.com/en/article/4624566

Download Persian Version:

https://daneshyari.com/article/4624566

Daneshyari.com