

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Multi-cores, posets, and lattice paths $\stackrel{\Leftrightarrow}{\sim}$

APPLIED MATHEMATICS

霐

Tewodros Amdeberhan^{a,*}, Emily Sergel Leven^{b,1}

 ^a Department of Mathematics, Tulane University, New Orleans, LA 70118, United States
^b Department of Mathematics, University of California, San Diego, CA 92093, United States

ARTICLE INFO

Article history: Received 8 July 2015 Accepted 24 July 2015 Available online 26 August 2015

MSC: 05A17 05A17 20M99

Keywords: Hooks Cores Posets Dyck paths Frobenius problem

ABSTRACT

Hooks are prominent in representation theory (of symmetric groups) and they play a role in number theory (via cranks associated to Ramanujan's congruences). A partition of a positive integer n has a Young diagram representation. To each cell in the diagram there is an associated statistic called hook length, and if a number t is absent from the diagram then the partition is called a t-core. A partition is an (s, t)-core if it is both an s- and a t-core. Since the work of Anderson on (s, t)-cores, the topic has received growing attention. This paper expands the discussion to multiplecores. More precisely, we explore $(s, s + 1, \dots, s + k)$ -core partitions much in the spirit of a recent paper by Stanley and Zanello. In fact, our results exploit connections between three combinatorial objects: multi-cores, posets and lattice paths (with a novel generalization of Dyck paths). Additional results and conjectures are scattered throughout the paper. For example, one of these statements implies a curious symmetry for twin-coprime (s, s+2)-core partitions.

 $\ensuremath{\mathbb O}$ 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: tamdeber@tulane.edu (T. Amdeberhan), esergel@ucsd.edu (E.S. Leven).

 $\label{eq:http://dx.doi.org/10.1016/j.aam.2015.08.002 \\ 0196-8858/ © 2015 Elsevier Inc. All rights reserved.$

 $^{^{*}}$ The authors are grateful to Adriano Garsia for warm hospitality during the first author's visit at UCSD and his role in initiating this research.

¹ Supported by National Science Foundation grant DGE 1144086.

0. Introduction

Let S be any set of positive integers. Say that a is generated by S if a can be written as a non-negative linear combination of the elements of S. Following the notation of [9], we define P_S to be the set whose elements are positive integers not generated by S. Equivalently, $k \in P_S$ if $\alpha_k = 0$ in the generating function given by

$$\prod_{s \in S} \frac{1}{1 - x^s} = \sum_{k \ge 0} \alpha_k \, x^k. \tag{0.1}$$

This is reminiscent of the Frobenius coin exchange problem. We make P_S into a poset by defining the cover relation so that a covers b (written a > b) if and only if $a - b \in S$. For example, see Fig. 1. Note that P_S is finite if and only if the elements of S are relatively prime (no d > 1 divides every $s \in S$).

We depict a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$ by its French Ferrers diagram. The hook length of a cell c in the diagram of λ is the number of cells directly north or east of c including itself. It is denoted by $\operatorname{hook}_{\lambda}(c)$, or just $\operatorname{hook}(c)$ when the partition is clear. For any positive integer s, we say λ an s-core if its diagram contains no cell cso that s divides $\operatorname{hook}(c)$. For example, see Fig. 2.

Let $(P, <_P)$ be a poset. We say that a set $I \subseteq P$ is a *lower ideal* of this poset if $a <_P b$ and $b \in I$ implies $a \in I$. The work of [4] gives a natural bijection between s-cores and lower ideals of $P_{\{s\}}$. In particular, this bijection associates the lower ideal I of $P_{\{s\}}$ with the s-core whose first column has hook lengths given by I. For example, the 4-core in Fig. 2 corresponds to the lower ideal $\{1, 2, 5, 9\}$ of $P_{\{4\}}$.

Fig. 1. The poset $P_{\{5,7,13\}}$.

Fig. 2. The French Ferrers diagram of the 4-core (6, 3, 1, 1) with hook lengths marked.

Download English Version:

https://daneshyari.com/en/article/4624572

Download Persian Version:

https://daneshyari.com/article/4624572

Daneshyari.com