

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Asymptotic shape of the convex hull of isotropic log-concave random vectors

APPLIED MATHEMATICS

霐

Apostolos Giannopoulos^a, Labrini Hioni^a, Antonis Tsolomitis^{b,*}

^a Department of Mathematics, University of Athens, Panepistimioupolis 15784,

Athens, Greece

 $^{\rm b}$ Department of Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece

A R T I C L E I N F O

Article history: Received 17 November 2015 Received in revised form 11 January 2016 Accepted 13 January 2016 Available online 22 January 2016

MSC: 52A21 46B07 52A40 60D05

Keywords: Isotropy Polytope Quermaßintegral Covering number Projection Diameter

ABSTRACT

Let x_1, \ldots, x_N be independent random points distributed according to an isotropic log-concave measure μ on \mathbb{R}^n , and consider the random polytope

 $K_N := \operatorname{conv}\{\pm x_1, \ldots, \pm x_N\}.$

We provide sharp estimates for the quermaßintegrals and other geometric parameters of K_N in the range $cn \leq N \leq \exp(n)$; these complement previous results from [13] and [14] that were given for the range $cn \leq N \leq \exp(\sqrt{n})$. One of the basic new ingredients in our work is a recent result of E. Milman that determines the mean width of the centroid body $Z_q(\mu)$ of μ for all $1 \leq q \leq n$.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: apgiannop@math.uoa.gr (A. Giannopoulos), lamchioni@math.uoa.gr (L. Hioni), antonis.tsolomitis@gmail.com (A. Tsolomitis).

1. Introduction

The purpose of this work is to add new information on the asymptotic shape of random polytopes whose vertices have a log-concave distribution. Without loss of generality we shall assume that this distribution is also isotropic. Recall that a convex body K in \mathbb{R}^n is called isotropic if it has volume 1, it is centered, i.e. its center of mass is at the origin, and its inertia matrix is a multiple of the identity: there exists a constant $L_K > 0$ such that

$$\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 \tag{1.1}$$

for every θ in the Euclidean unit sphere S^{n-1} . More generally, a log-concave probability measure μ on \mathbb{R}^n is called isotropic if its center of mass is at the origin and its inertia matrix is the identity; in this case, the isotropic constant of μ is defined as

$$L_{\mu} := \sup_{x \in \mathbb{R}^n} \left(f_{\mu}(x) \right)^{1/n}, \tag{1.2}$$

where f_{μ} is the density of μ with respect to the Lebesgue measure. Note that a centered convex body K of volume 1 in \mathbb{R}^n is isotropic if and only if the log-concave probability measure μ_K with density $x \mapsto L_K^n \mathbf{1}_{K/L_K}(x)$ is isotropic.

A very well-known open question in the theory of isotropic measures is the hyperplane conjecture, which asks if there exists an absolute constant C > 0 such that

$$L_n := \sup\{L_\mu : \mu \text{ is an isotropic log-concave measure on } \mathbb{R}^n\} \leqslant C$$
(1.3)

for all $n \ge 1$. Bourgain proved in [9] that $L_n \le c\sqrt[4]{n} \log n$ (more precisely, he showed that $L_K \le c\sqrt[4]{n} \log n$ for every isotropic symmetric convex body K in \mathbb{R}^n), while Klartag [18] obtained the bound $L_n \le c\sqrt[4]{n}$. A second proof of Klartag's estimate appears in [20].

The study of the asymptotic shape of random polytopes whose vertices have a log-concave distribution was initiated in [13] and [14]. Given an isotropic log-concave measure μ on \mathbb{R}^n , for every $N \ge n$ we consider N independent random points x_1, \ldots, x_N distributed according to μ and define the random polytope $K_N := \operatorname{conv}\{\pm x_1, \ldots, \pm x_N\}$. The main idea in these works was to compare K_N with the L_q -centroid body of μ for a suitable value of q; roughly speaking, K_N is close to the body $Z_{\log(2N/n)}(\mu)$ with high probability. Recall that the L_q -centroid bodies $Z_q(\mu), q \ge 1$, are defined through their support function $h_{Z_q(\mu)}$, which is given by

$$h_{Z_q(\mu)}(y) := \|\langle \cdot, y \rangle\|_{L_q(\mu)} = \left(\int_{\mathbb{R}^n} |\langle x, y \rangle|^q d\mu(x)\right)^{1/q}.$$
(1.4)

These bodies incorporate information about the distribution of linear functionals with respect to μ . The L_q -centroid bodies were introduced, under a different normalization, by Lutwak and Zhang in [24], while in [29] for the first time, and in [30] later on, Paouris

Download English Version:

https://daneshyari.com/en/article/4624590

Download Persian Version:

https://daneshyari.com/article/4624590

Daneshyari.com