Star-cumulants of free unitary Brownian motion

Nizar Demni ${ }^{\text {a,1 }}$, Mathieu Guay-Paquet ${ }^{\mathrm{b}, 2}$, Alexandru Nica ${ }^{\mathrm{c}, *, 3}$
${ }^{\text {a }}$ IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
${ }^{\text {b }}$ LaCIM, Université du Québec à Montréal, 201 Président-Kennedy, Montréal, Québec H2X 3Y7, Canada
${ }^{\text {c }}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

A R T I C L E I N F O

Article history:

Received 10 September 2014
Received in revised form 7 May 2015
Accepted 7 May 2015
Available online 20 May 2015

$M S C$:

primary 46L54
secondary 06A07, 60G99

Keywords:
Free probability
Free unitary Brownian motion
Free cumulants
Non-crossing partitions
R-diagonal element
Infinitesimal determining sequence

Abstract

We study joint free cumulants of u_{t} and u_{t}^{*}, where u_{t} is a free unitary Brownian motion at time t. We determine explicitly some special families of such cumulants. On the other hand, for a general joint cumulant of u_{t} and u_{t}^{*}, we "calculate the derivative" for $t \rightarrow \infty$, when u_{t} approaches a Haar unitary. In connection to the latter calculation we put into evidence an "infinitesimal determining sequence" which naturally accompanies an arbitrary R-diagonal element in a tracial *-probability space.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $\left(u_{t}\right)_{t \geq 0}$ be a free unitary Brownian motion in the sense of $[3,4]$ - that is, every u_{t} is a unitary element in some tracial $*$-probability space $\left(\mathcal{A}_{t}, \varphi_{t}\right)$, with $\varphi_{t}\left(u_{t}\right)=e^{-t / 2}$, and where the rescaled element $v_{t}:=e^{t / 2} u_{t}$ has S-transform given by

$$
\begin{equation*}
S_{v_{t}}(z)=e^{t z}, \quad z \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

Closely related to Eq. (1.1), one has a nice formula for the free cumulants of u_{t}, i.e. for the sequence of numbers $\left(\kappa_{n}\left(u_{t}, \ldots, u_{t}\right)\right)_{n=1}^{\infty}$, where $\kappa_{n}: \mathcal{A}_{t}^{n} \rightarrow \mathbb{C}$ is the n-th free cumulant functional of the space $\left(\mathcal{A}_{t}, \varphi_{t}\right)$. Indeed, these numbers are the coefficients of the R-transform $R_{u_{t}}$. By using the relation between the S-transform and the compositional inverse of the R-transform (which simply says that $z S(z)=R^{\langle-1\rangle}(z)$), one finds that

$$
\begin{equation*}
R_{v_{t}}(z)=\frac{1}{t} W(t z), \quad t>0 \tag{1.2}
\end{equation*}
$$

where

$$
W(y)=y-y^{2}+\frac{3}{2} y^{3}-\frac{8}{3} y^{4}+\cdots+\frac{(-n)^{n-1}}{n!} y^{n}+\cdots
$$

is the Lambert series. Extracting the coefficient of z^{n} in (1.2) gives the value of $\kappa_{n}\left(v_{t}, \ldots, v_{t}\right)$, then rescaling back gives

$$
\begin{equation*}
\kappa_{n}\left(u_{t}, \ldots, u_{t}\right)=e^{-n t / 2} \kappa_{n}\left(v_{t}, \ldots, v_{t}\right)=e^{-n t / 2} \frac{(-n)^{n-1}}{n!} \cdot t^{n-1}, n \in \mathbb{N}, t \geq 0 \tag{1.3}
\end{equation*}
$$

In this paper we study joint free cumulants of u_{t} and u_{t}^{*}, that is, quantities of the form

$$
\kappa_{n}\left(u_{t}^{\omega(1)}, \ldots, u_{t}^{\omega(n)}\right), \text { where } n \in \mathbb{N} \text { and } \omega=(\omega(1), \ldots, \omega(n)) \in\{1, *\}^{n}
$$

The motivation for paying attention to these joint free cumulants comes from looking at the limit $t \rightarrow \infty$, when u_{t} approximates in distribution a Haar unitary. Recall that a unitary u in a $*$-probability space (\mathcal{A}, φ) is said to be a Haar unitary when it has the property that $\varphi\left(u^{n}\right)=0$ for every $n \in \mathbb{Z} \backslash\{0\}$. This property trivially implies $\kappa_{n}(u, \ldots, u)=0$ for every $n \in \mathbb{N}$, thus the free cumulants of u alone do not look too exciting. However, things become interesting upon considering the larger family of joint free cumulants of u and u^{*}. There we get the following non-trivial formula, first found in [10]: for $\omega=(\omega(1), \ldots, \omega(n)) \in\{1, *\}^{n}$ one has

$$
\kappa_{n}\left(u^{\omega(1)}, \ldots, u^{\omega(n)}\right)=\left\{\begin{array}{cc}
(-1)^{k-1} C_{k-1}, & \text { if } n \text { is even, } n=2 k, \text { and } \tag{1.4}\\
& \omega=(1, *, 1, *, \ldots, 1, *) \\
& \text { or } \omega=(*, 1, *, 1, \ldots, *, 1) \\
0, & \text { otherwise },
\end{array}\right.
$$

https://daneshyari.com/en/article/4624606

Download Persian Version:
https://daneshyari.com/article/4624606

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nizar.demni@univ-rennes1.fr (N. Demni), mathieu.guaypaquet@lacim.ca (M. Guay-Paquet), anica@uwaterloo.ca (A. Nica).
 ${ }^{1}$ Nizar Demni was supported in part by Grant ANR-11-LABEX-0020-01 from ANR, France.
 ${ }^{2}$ Mathieu Guay-Paquet was supported by a Postdoctoral Fellowship from NSERC, Canada.
 ${ }^{3}$ Alexandru Nica was supported in part by a Discovery Grant from NSERC, Canada.

