

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

The sorting index on colored permutations and even-signed permutations $\stackrel{\bigstar}{\Rightarrow}$

APPLIED MATHEMATICS

霐

Sen-Peng Eu^a, Yuan-Hsun Lo^{a,*}, Tsai-Lien Wong^b

 ^a Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan, ROC
^b Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC

A R T I C L E I N F O

Article history: Received 7 October 2014 Received in revised form 2 April 2015 Accepted 3 April 2015 Available online 20 April 2015

MSC: 05A05 05A19

Keywords: Sorting index Set-valued statistics Joint equidistribution Coxeter group

ABSTRACT

We define a new statistic **sor** on the set of colored permutations $\mathsf{G}_{r,n}$ and prove that it has the same distribution as the length function. For the set of restricted colored permutations corresponding to the arrangements of n non-attacking rooks on a fixed Ferrers shape we show that the following two sequences of set-valued statistics are joint equidistributed: $(\ell,\mathsf{Rmil}^0,\mathsf{Rmil}^1,\ldots,\mathsf{Rmil}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmil}^1,\ldots,\mathsf{Lmil}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^1,\ldots,\mathsf{Lmil}^{r-1})$ and $(\mathsf{sor},\mathsf{Cyc}^0,\mathsf{Cyc}^{r-1},\ldots,\mathsf{Cyc}^1,\mathsf{Lmc}^0,\mathsf{Lmap}^1,\ldots,\mathsf{Lmal}^r,\mathsf{Lmal}^0,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^{r-1},\mathsf{Lmal}^0,\mathsf{Lmal}^r,\ldots,\mathsf{Lmal}^r,\mathsf{Lma}^r,\mathsf{L$

© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: speu@math.ntnu.edu.tw (S.-P. Eu), yhlo0830@gmail.com (Y.-H. Lo), tlwong@math.nsysu.edu.tw (T.-L. Wong).

http://dx.doi.org/10.1016/j.aam.2015.04.001

 $^{^{\}star}$ Partially supported by Ministry of Science and Technology, Taiwan, ROC under grants MOST 101-2115-M-003-013-MY3 (S.-P. Eu), 103-2811-M-003-013 (Y.-H. Lo) and 102-2115-M-110-006-MY2 (T.-L. Wong).

^{*} Corresponding author.

^{0196-8858/© 2015} Elsevier Inc. All rights reserved.

1. Introduction

1.1. Mahonian and Stirling statistics

Let \mathfrak{S}_n be the group of permutations on n letters $[n] := \{1, 2, \ldots, n\}$. A pair (σ_i, σ_j) is called an *inversion* in a permutation $\sigma = \sigma_1 \cdots \sigma_n \in \mathfrak{S}_n$ if i > j and $\sigma_i < \sigma_j$. Denote by $\mathsf{inv}(\sigma)$ the number of inversions in σ . The distribution of inv over \mathfrak{S}_n was first found by Rodriguez [9] to be

6

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\mathsf{inv}(\sigma)} = \prod_{i=1}^n [i]_q, \tag{1.1}$$

where $[i]_q := 1 + q + \dots + q^{i-1}$.

In a Coxeter group, the length $\ell(\sigma)$ of a group element σ is the minimal number of generators needed to express σ . It is well known [2, Chapter 8] that \mathfrak{S}_n is the Coxeter group of type A, where the generators are the adjacent transpositions and $\ell(\sigma) = \mathsf{inv}(\sigma)$. A permutation statistic is called *Mahonian* if it is equidistributed with inv over \mathfrak{S}_n . Similarly in a Coxeter group a statistic is called *Mahonian* if it is equidistributed with the length function ℓ .

The number of cycles cyc is another important statistic, whose distribution over \mathfrak{S}_n is [10, Proposition 1.3.4]

$$\sum_{\sigma \in \mathfrak{S}_n} t^{\mathsf{cyc}(\sigma)} = \prod_{i=1}^n (t+i-1).$$
(1.2)

As the coefficients of this polynomial are the (unsigned) Stirling numbers of the first kind, a permutation statistic over \mathfrak{S}_n is called *Stirling* if it is equidistributed with cyc.

The reflection length $\ell'(\sigma)$ of σ in a Coxeter group is the minimal number of reflections (i.e., elements conjugate to generators) needed to express σ . In type A, the reflections are the transpositions and one has

$$\operatorname{cyc}(\sigma) = n - \ell'(\sigma). \tag{1.3}$$

1.2. Sorting index

Petersen [7] defined the sorting index sor over \mathfrak{S}_n and proved it is Mahonian. One can uniquely decompose $\sigma \in \mathfrak{S}_n$ into a product of transpositions

$$\sigma = (i_1 j_1)(i_2 j_2) \cdots (i_k j_k)$$

with $j_1 < j_2 < \cdots < j_k$ and $i_1 < j_1, i_2 < j_2, \ldots, i_k < j_k$. Then the sorting index of σ is

Download English Version:

https://daneshyari.com/en/article/4624643

Download Persian Version:

https://daneshyari.com/article/4624643

Daneshyari.com