The sorting index on colored permutations and even-signed permutations **

Sen-Peng Eu ${ }^{\text {a }}$, Yuan-Hsun Lo ${ }^{\text {a,* }}$, Tsai-Lien Wong ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan, ROC
${ }^{\text {b }}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 7 October 2014
Received in revised form 2 April
2015
Accepted 3 April 2015
Available online 20 April 2015

MSC:

05A05
05A19

Keywords:
Sorting index
Set-valued statistics
Joint equidistribution
Coxeter group

Abstract

We define a new statistic sor on the set of colored permutations $\mathrm{G}_{r, n}$ and prove that it has the same distribution as the length function. For the set of restricted colored permutations corresponding to the arrangements of n non-attacking rooks on a fixed Ferrers shape we show that the following two sequences of set-valued statistics are joint equidistributed: $\left(\ell\right.$, Rmil 0, Rmil $^{1}, \ldots$, Rmil $^{r-1}$, Lmil 0, Lmil $^{1}, \ldots$, Lmil $^{r-1}$, Lmal 0, Lmal $^{1}, \ldots$, Lmal $^{r-1}$, Lmap $^{0}{ }^{0}$ Lmap $^{1}, \ldots$, Lmap $^{r-1}$) and (sor, $\mathrm{Cyc}^{0}, \mathrm{Cyc}^{r-1}, \ldots, \mathrm{Cyc}^{1}$, Lmic 0, Lmic $^{r-1}, \ldots$, Lmic 1, Lmal 0, Lmal $^{1}, \ldots$, Lmal $^{r-1}$, Lmap 0, Lmap $^{1}, \ldots$, Lmap $^{r-1}$). Analogous results are also obtained for Coxeter group of type D. Our work generalizes recent results of Petersen, Chen-Gong-Guo and Poznanović.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. Mahonian and Stirling statistics

Let \mathfrak{S}_{n} be the group of permutations on n letters $[n]:=\{1,2, \ldots, n\}$. A pair $\left(\sigma_{i}, \sigma_{j}\right)$ is called an inversion in a permutation $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathfrak{S}_{n}$ if $i>j$ and $\sigma_{i}<\sigma_{j}$. Denote by $\operatorname{inv}(\sigma)$ the number of inversions in σ. The distribution of inv over \mathfrak{S}_{n} was first found by Rodriguez [9] to be

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\sigma)}=\prod_{i=1}^{n}[i]_{q} \tag{1.1}
\end{equation*}
$$

where $[i]_{q}:=1+q+\cdots+q^{i-1}$.
In a Coxeter group, the length $\ell(\sigma)$ of a group element σ is the minimal number of generators needed to express σ. It is well known $[2$, Chapter 8$]$ that \mathfrak{S}_{n} is the Coxeter group of type A, where the generators are the adjacent transpositions and $\ell(\sigma)=\operatorname{inv}(\sigma)$. A permutation statistic is called Mahonian if it is equidistributed with inv over \mathfrak{S}_{n}. Similarly in a Coxeter group a statistic is called Mahonian if it is equidistributed with the length function ℓ.

The number of cycles cyc is another important statistic, whose distribution over \mathfrak{S}_{n} is [10, Proposition 1.3.4]

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{cyc}(\sigma)}=\prod_{i=1}^{n}(t+i-1) \tag{1.2}
\end{equation*}
$$

As the coefficients of this polynomial are the (unsigned) Stirling numbers of the first kind, a permutation statistic over \mathfrak{S}_{n} is called Stirling if it is equidistributed with cyc.

The reflection length $\ell^{\prime}(\sigma)$ of σ in a Coxeter group is the minimal number of reflections (i.e., elements conjugate to generators) needed to express σ. In type A, the reflections are the transpositions and one has

$$
\begin{equation*}
\operatorname{cyc}(\sigma)=n-\ell^{\prime}(\sigma) \tag{1.3}
\end{equation*}
$$

1.2. Sorting index

Petersen [7] defined the sorting index sor over \mathfrak{S}_{n} and proved it is Mahonian. One can uniquely decompose $\sigma \in \mathfrak{S}_{n}$ into a product of transpositions

$$
\sigma=\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right) \cdots\left(i_{k} j_{k}\right)
$$

with $j_{1}<j_{2}<\cdots<j_{k}$ and $i_{1}<j_{1}, i_{2}<j_{2}, \ldots, i_{k}<j_{k}$. Then the sorting index of σ is

https://daneshyari.com/en/article/4624643

Download Persian Version:
https://daneshyari.com/article/4624643

Daneshyari.com

[^0]: 4. Partially supported by Ministry of Science and Technology, Taiwan, ROC under grants MOST $101-2115-\mathrm{M}-003-013-\mathrm{MY} 3$ (S.-P. Eu), 103-2811-M-003-013 (Y.-H. Lo) and 102-2115-M-110-006-MY2 (T.-L. Wong).

 * Corresponding author.

 E-mail addresses: speu@math.ntnu.edu.tw (S.-P. Eu), yhlo0830@gmail.com (Y.-H. Lo), tlwong@math.nsysu.edu.tw (T.-L. Wong).

