On 1324-avoiding permutations

Andrew R. Conway, Anthony J. Guttmann*
ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

A R T I C L E I N F O

Article history:

Received 19 August 2014
Accepted 29 November 2014
Available online 23 December 2014

MSC:

05A05
05A15
05A16

Keywords:
Permutation patterns
Enumeration algorithm
Asymptotics

A B S T R A C T

We give an improved algorithm for counting the number of 1324-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length4 pattern-avoiding permutations, the generating function in this case does not have an algebraic singularity. Rather, the number of 1324 -avoiding permutations of length n behaves as

$$
B \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{g}
$$

We estimate $\mu=11.60 \pm 0.01, \sigma=1 / 2, \mu_{1}=0.040 \pm 0.0015$, $g=-1.1 \pm 0.2$ and $B=7 \pm 1.3$.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let π be a permutation on $[n]$ and τ be a permutation on $[k]$. Then τ is said to occur as a pattern in π if for some subsequence of π of length k all the elements of the subsequence occur in the same relative order as do the elements of τ. For example, 1324

[^0]occurs as a pattern in 152364 as 1526 and 1536 as both are in the same relative order as 1324. If a permutation τ does not occur in π, then this is said to be a pattern-avoiding permutation, or PAP.

Let $P(z)=\sum_{n \geq 0} p_{n} z^{n}$ be the ordinary generating function (OGF) for the number of permutations p_{n} of length n avoiding the pattern 1324. It is well known that, for the classical, length 4 PAPs, the 24 possible patterns fall into one of three classes [26], called Wilf classes. That is to say, there are three distinct OGFs describing all 24 patterns.

For the sequence 1234 and its associated patterns, in 1990 Gessel [14] showed that the number of length $n>0$ pattern-avoiding permutations is

$$
\begin{equation*}
p_{n}(1234)=\frac{1}{(n+1)^{2}(n+2)} \sum_{k=0}^{n}\binom{2 k}{k}\binom{n+1}{k+1}\binom{n+2}{k+1} . \tag{1}
\end{equation*}
$$

Asymptotically,

$$
p_{n}(1234) \sim \frac{81 \sqrt{3}}{16 \pi} \cdot 9^{n} \cdot n^{-4}
$$

and the generating function $P_{1234}(x)=\sum_{n} p_{n}(1234) x^{n}$ satisfies the linear ODE

$$
\begin{align*}
& \left(9 x^{5}-19 x^{4}+11 x^{3}-x^{2}\right) \cdot \frac{d^{3} P_{1234}(x)}{d x^{3}}+\left(72 x^{4}-153 x^{3}+90 x^{2}-9 x\right) \cdot \frac{d^{2} P_{1234}(x)}{d x^{2}} \\
& \quad+\left(126 x^{3}-264 x^{2}+154 x-16\right) \cdot \frac{d P_{1234}(x)}{d x} \\
& \quad+\left(32-72 x+36 x^{2}\right) \cdot P_{1234}(x)=0 \tag{2}
\end{align*}
$$

with initial conditions $P_{1234}(0)=1, P_{1234}^{\prime}(2)=0, P_{1234}^{\prime \prime}(2)=12$.
For the sequence 1342 and its associated patterns, in 1997 Bóna [3] showed that the number of length $n>0$ pattern-avoiding permutations is

$$
\begin{align*}
p_{n}(1342)= & (-1)^{n-1} \cdot \frac{\left(7 n^{2}-3 n-2\right)}{2} \\
& +3 \sum_{k=0}^{n}(-1)^{n-i} \cdot 2^{i+1} \cdot \frac{(2 i-4)!}{i!(i-2)!} \cdot\binom{n-i+2}{2} \tag{3}
\end{align*}
$$

The generating function $P_{1342}(x)=\sum_{n} p_{n}(1342) x^{n}$ satisfies the linear ODE

$$
\begin{gather*}
\left(8 x^{2}+7 x-1\right) \cdot \frac{d^{2} P_{1342}(x)}{d x^{2}}+(28 x-8) \cdot \frac{d P_{1342}(x)}{d x}+12 \cdot P_{1342}(x)=0 \\
P_{1342}(0)=1, \quad P_{1342}^{\prime}(0)=1 \tag{4}
\end{gather*}
$$

Indeed, it can be exactly solved to give [22] the simple algebraic expression

$$
P_{1342}(x)=\frac{32 x}{1+20 x-8 x^{2}-(1-8 x)^{3 / 2}}=\frac{(1-8 x)^{3 / 2}}{2(1+x)^{3}}+\frac{\left(1+20 x-8 x^{2}\right)}{2(1+x)^{3}},
$$

https://daneshyari.com/en/article/4624680

Download Persian Version:
https://daneshyari.com/article/4624680

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: andrew1324@greatcactus.org (A.R. Conway), guttmann@unimelb.edu.au (A.J. Guttmann).

