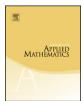


Contents lists available at ScienceDirect

Advances in Applied Mathematics



The structure of 4-flowers of vertically 4-connected matroids **

Rong Chen

Center for Discrete Mathematics, Fuzhou University, Fuzhou City, 350003, PR China

ARTICLE INFO

Article history: Received 14 March 2014 Received in revised form 17 April 2014 Accepted 5 May 2014 Available online 28 May 2014

MSC: 52B40

Keywords:
Matroids
Flowers
Connectivity

ABSTRACT

Aikin and Oxley (2012) [2] studied the structure of 4-flowers in 4-connected matroids. In the paper we consider 4-flowers in vertically 4-connected matroids. There is a natural relation of equivalence on such 4-flowers. We characterize the structure that arises when 4-flowers are equivalent under the relation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the paper we study 4-flowers in vertically 4-connected matroids. That extends work of Aikin and Oxley [2]. In particular, we describe the structure that arises when 4-flowers are equivalent.

Before stating our main theorem, we need some technical preliminaries. The matroid terminology used here mainly follows Oxley [5]. Let E be the ground set of a matroid M.

E-mail address: rongchen@fzu.edu.cn.

 $^{^{\,\}pm}$ The research was partially supported by CNNSF (No. 11201076), SRFDP (No. 20113514120010), JA11032 and CSC.

The local connectivity of two subsets X and Y of E, denoted by $\sqcap(X,Y)$, is defined by $\sqcap(X,Y) = r(X) + r(Y) - r(X \cup Y)$. If (X,Y) is a partition of E, then we say $\lambda(X) = \sqcap(X,E-X)$. Let $k \geq 1$ be an integer. If $\lambda(X) \leq k-1$, then we say that X or (X,E-X) is k-separating. If $\lambda(X) = k-1$, then X or (X,E-X) is k-separating. If $1 \leq k \leq \ell$, then we set $[\ell] = \{1,2,\cdots,\ell\}$ and $[k,\ell] = \{k,k+1,\cdots,\ell\}$. An ordered partition $\Phi = (P_1,P_2,\cdots,P_n)$ of the ground set E of a matroid M is a k-flower with petals P_1,P_2,\cdots,P_n if each P_i is exactly k-separating and, when $n \geq 3$, each $P_i \cup P_{i+1}$ is exactly k-separating. When M is 3-connected, a 3-flower is what is defined in [6] as a flower. Assume that I is a proper non-empty subset of [n]. Then Φ is a k-anemone if $P_I = \bigcup_{i \in I} P_i$ is exactly k-separating for all such I; and Φ is a k-daisy if P_I is exactly k-separating for precisely those subsets I whose numbers form a consecutive set in the cyclic order $(1,2,\cdots,n)$. Aikin and Oxley [1] generalized a result of [6] by showing that every non-trivial k-flower is either a k-anemone or a k-daisy. For an arbitrary petal P_i of Φ , when Φ is a k-anemone, any petal is adjacent to P_i up to labels; and when Φ is a k-daisy, a petal is adjacent to P_i up to labels if it is adjacent to P_i in the cyclic order (P_1, P_2, \cdots, P_n) .

Let X be an exactly 3-separating set of a 3-connected matroid M. The full closure of X, denoted by fcl(X), is the minimum set containing X such that no element $e \in E - fcl(X)$ satisfies $\lambda(fcl(X) \cup \{e\}) \leq 2$. An element $e \in P_i$ is loose if there is some petal P_j adjacent to P_i up to labels satisfying $e \in fcl(P_j)$. Petal P_i is loose if every element of it is loose, otherwise it is tight. And Φ is tight if every petal of it is tight.

In the rest of this section, all 4-flowers are in a vertically 4-connected matroid with rank at least seven. Let $\Phi = (P_1, \dots, P_n)$ be a 4-flower. By [1, Lemma 3.4], there is an integer, denoted by $c(\Phi)$, that represents the local connectivity between any pair of consecutive petals. If $n \geq 5$, then by [1, Lemma 3.4], there is an integer, denoted by $d(\Phi)$, that represents the local connectivity between any pair of nonconsecutive petals. If n = 4, then $\sqcap(P_1, P_3)$ may be not equal to $\sqcap(P_2, P_4)$. In this paper, we will completely characterize the structure of 4-flowers with equal local connectivities for any two nonconsecutive petals. By [1, Theorems 1.3 and 1.4], there are six types for such 4-flowers, that is, 4-anemones with $c \in \{0, 1, 2, 3\}$ and 4-daisies of type (2, 1) or (1, 0), where a 4-flower of type (c, d) means a 4-flower with $c(\Phi) = c$ and $d(\Phi) = d$.

For any tight 3-flower Φ with at least four petals of a 3-connected matroid, Oxley, Semple and Whittle [6] completely characterized its structure, which enables us to find all equivalent 3-flowers of Φ . On the other hand, Chen and Xiang [3] recently proved that via an operation "reducing", every 3-connected representable matroid M with at least nine elements can be decomposed into a set of sequentially 4-connected matroids and three special classes of matroids. Moreover, via an operation similar to "reducing", sequentially 4-connected matroids can be decomposed into vertically 4-connected matroids and a special class of matroid. Thus, it is interesting to know more about the structure of 4-flowers of vertically 4-connected matroids. To characterize the structure of tight 4-flowers with at least four petals of a vertically 4-connected matroid with rank at least seven, first we must generalize the definition of full-closure to allow moving rank-2 sets like [2,4]. Here is an example to illustrate this, which is similar to the one given in [2].

Download English Version:

https://daneshyari.com/en/article/4624706

Download Persian Version:

https://daneshyari.com/article/4624706

<u>Daneshyari.com</u>