

Contents lists available at ScienceDirect

## Advances in Applied Mathematics

www.elsevier.com/locate/yaama

# Sign imbalances of snakes and valley-signed permutations $\stackrel{\bigstar}{\Rightarrow}$



APPLIED MATHEMATICS

霐

Huilan Chang, Sen-Peng Eu, Yuan-Hsun Lo\*

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC

#### A R T I C L E I N F O

Article history: Received 10 May 2013 Accepted 7 May 2014 Available online 9 July 2014

MSC: 05A05 05A19

Keywords: Snake Inversions Sign imbalance Alternating permutation Valley-signed permutation

#### АВЅТ КАСТ

One of the combinatorial structures counted by the Springer numbers is the set of snakes, which in type  $A_n$  is the set of the alternating permutations and in type  $B_n$  (or  $D_n$ ) is the set of certain signed permutations. The set of valley-signed permutations, defined by Josuat-Vergès, Novelli and Thibon, is another structure counted by the Springer numbers of type  $B_n$  (or  $D_n$ ). In this paper we determine the sign imbalances of these sets of snakes and valley-signed permutations under various inversion statistics  $inv_w$ ,  $inv_o$ ,  $inv_s$ ,  $inv_B$ , and  $inv_D$ .

© 2014 Elsevier Inc. All rights reserved.

*E-mail addresses:* huilan0102@gmail.com (H. Chang), speu@nuk.edu.tw (S.-P. Eu), yhlo0830@gmail.com (Y.-H. Lo).

<sup>&</sup>lt;sup>\*</sup> Partially supported by National Science Council of Taiwan under grants NSC 101-2115-M-390-004-MY3 (S.-P. Eu and Y.-H. Lo) and NSC 100-2115-M-390-004-MY2 (H. Chang).

<sup>\*</sup> Corresponding author.

### 1. Introduction

#### 1.1. Springer numbers and snakes

The Springer numbers were introduced by Springer [14] in the study of the Coxeter groups. Let (W, S) be an irreducible Coxeter system and  $\ell$  be the length function. We say  $D(w) := \{s \in S : \ell(ws) < \ell(w)\}$  is the descent set of  $w \in W$ . The Springer number of (W, S) is defined by

$$K(W) := \max_{J \subseteq S} |\mathcal{D}_J|,\tag{1.1}$$

where  $\mathcal{D}_J = \{w \in W : D(w) = J\}$ . The sequences of Springer numbers of types  $A_n, B_n$ and  $D_n$   $(n \ge 0)$  are respectively

- type  $A_n$ : 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521,...
- type  $B_n$ : 1, 1, 3, 11, 57, 361, 2763, 24611, 250737, 2873041, 36581523, ...
- type  $D_n$ : 1, 1, 1, 5, 23, 151, 1141, 10 205, 103 823, 1 190 191, 15 151 981, ...

Let  $\mathfrak{S}_n$  be the set of permutations of  $[n] := \{1, 2, \ldots, n\}$ . A permutation  $\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathfrak{S}_n$  is alternating if  $\pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots$ . Let  $\mathbf{E}_n$  be the set of alternating permutations of [n] and it is well known [17] that  $|\mathbf{E}_n|$  is the Euler number.

Let  $[\pm n] := \{-n, \ldots, -1\} \cup \{1, \ldots, n\}$ . A signed permutation  $\pi = \pi_{-n} \cdots \pi_{-1} \pi_1 \cdots \pi_n$ (in its one-line notation) is a bijection of  $[\pm n]$  to itself such that  $\pi(-i) = -\pi(i)$  for all  $i \in [\pm n]$ . For simplicity we denote -i by  $\overline{i}$ . The window notation of  $\pi$  is  $\pi = [\pi_1 \pi_2 \cdots \pi_n]$ . For example, the signed permutation  $\pi = 1 \overline{4} \overline{5} \overline{3} \overline{2} \overline{2} \overline{3} \overline{5} \overline{4} \overline{1}$  has the window notation  $[2 \overline{3} \overline{5} \overline{4} \overline{1}]$ . Throughout this paper, if there is no danger of confusion, we simply write  $2 \overline{3} \overline{5} \overline{4} \overline{1}$  instead of  $[2 \overline{3} \overline{5} \overline{4} \overline{1}]$ .

Let  $\mathfrak{S}_n^{\pm}$  denote the set of signed permutations of  $[\pm n]$  and  $\mathfrak{S}_n^D \subseteq \mathfrak{S}_n^{\pm}$  denote the set of signed permutations  $\pi$  with an even number of negatives among  $\pi_1, \ldots, \pi_n$ . It is known [2] that  $\mathfrak{S}_n, \mathfrak{S}_n^{\pm}$  and  $\mathfrak{S}_n^D$  are respectively combinatorial descriptions of the Coxeter groups of types  $A_n, B_n$  and  $D_n$ . A variety of signed alternating permutations are given as follows.

- $\mathbf{S}_n := \{ \pi \in \mathfrak{S}_n^{\pm} : \pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots \},$
- $\mathbf{S}_n^0 := \{ \pi \in \mathfrak{S}_n^{\pm} : \pi_1 > 0 \text{ and } \pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots \},$
- $\mathbf{D}_n := \{ \pi \in \mathfrak{S}_n^D : \pi_1 + \pi_2 < 0 \text{ and } \pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots \}.$

Arnol'd [1] proved that  $\mathbf{E}_n$ ,  $\mathbf{S}_n^0$  and  $\mathbf{D}_n$  are equal to some maximum sets  $\mathcal{D}_J$  as introduced in Eq. (1.1) for W the Coxeter groups of types  $A_n$ ,  $B_n$  and  $D_n$ , respectively. Therefore, the cardinalities of  $\mathbf{E}_n$ ,  $\mathbf{S}_n^0$  and  $\mathbf{D}_n$  are the Springer numbers of types  $A_n$ ,  $B_n$  and  $D_n$ , respectively. Arnol'd coined the term *snakes* to describe the (signed) alternating Download English Version:

https://daneshyari.com/en/article/4624723

Download Persian Version:

https://daneshyari.com/article/4624723

Daneshyari.com