Sign imbalances of snakes and valley-signed permutations ${ }^{\text {*T }}$

Huilan Chang, Sen-Peng Eu, Yuan-Hsun Lo*
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 10 May 2013
Accepted 7 May 2014
Available online 9 July 2014

MSC:

05A05
05A19

Keywords:
Snake
Inversions
Sign imbalance
Alternating permutation
Valley-signed permutation

Abstract

One of the combinatorial structures counted by the Springer numbers is the set of snakes, which in type A_{n} is the set of the alternating permutations and in type B_{n} (or D_{n}) is the set of certain signed permutations. The set of valley-signed permutations, defined by Josuat-Vergès, Novelli and Thibon, is another structure counted by the Springer numbers of type $B_{n}\left(\right.$ or $\left.D_{n}\right)$. In this paper we determine the sign imbalances of these sets of snakes and valley-signed permutations under various inversion statistics $\operatorname{inv}_{w}, \operatorname{inv}_{o}, \operatorname{inv}_{s}, \operatorname{inv}_{B}$, and inv_{D}.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

1.1. Springer numbers and snakes

The Springer numbers were introduced by Springer [14] in the study of the Coxeter groups. Let (W, S) be an irreducible Coxeter system and ℓ be the length function. We say $D(w):=\{s \in S: \ell(w s)<\ell(w)\}$ is the descent set of $w \in W$. The Springer number of (W, S) is defined by

$$
\begin{equation*}
K(W):=\max _{J \subseteq S}\left|\mathcal{D}_{J}\right|, \tag{1.1}
\end{equation*}
$$

where $\mathcal{D}_{J}=\{w \in W: D(w)=J\}$. The sequences of Springer numbers of types A_{n}, B_{n} and $D_{n}(n \geq 0)$ are respectively

- type $A_{n}: 1,1,1,2,5,16,61,272,1385,7936,50521, \ldots$
- type $B_{n}: 1,1,3,11,57,361,2763,24611,250737,2873041,36581523, \ldots$
- type $D_{n}: 1,1,1,5,23,151,1141,10205,103823,1190191,15151981, \ldots$

Let \mathfrak{S}_{n} be the set of permutations of $[n]:=\{1,2, \ldots, n\}$. A permutation $\pi=$ $\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$ is alternating if $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$. Let \mathbf{E}_{n} be the set of alternating permutations of $[n]$ and it is well known [17] that $\left|\mathbf{E}_{n}\right|$ is the Euler number.

Let $[\pm n]:=\{-n, \ldots,-1\} \cup\{1, \ldots, n\}$. A signed permutation $\pi=\pi_{-n} \cdots \pi_{-1} \pi_{1} \cdots \pi_{n}$ (in its one-line notation) is a bijection of $[\pm n]$ to itself such that $\pi(-i)=-\pi(i)$ for all $i \in$ $[\pm n]$. For simplicity we denote $-i$ by \bar{i}. The window notation of π is $\pi=\left[\pi_{1} \pi_{2} \cdots \pi_{n}\right]$. For example, the signed permutation $\pi=1 \overline{4} \overline{5} 3 \overline{2} 2 \overline{3} 54 \overline{1}$ has the window notation $[2 \overline{3} 54 \overline{1}]$. Throughout this paper, if there is no danger of confusion, we simply write $2 \overline{3} 54 \overline{1}$ instead of $[2 \overline{3} 54 \overline{1}]$.

Let $\mathfrak{S}_{n}^{ \pm}$denote the set of signed permutations of $[\pm n]$ and $\mathfrak{S}_{n}^{D} \subseteq \mathfrak{S}_{n}^{ \pm}$denote the set of signed permutations π with an even number of negatives among π_{1}, \ldots, π_{n}. It is known [2] that $\mathfrak{S}_{n}, \mathfrak{S}_{n}^{ \pm}$and \mathfrak{S}_{n}^{D} are respectively combinatorial descriptions of the Coxeter groups of types A_{n}, B_{n} and D_{n}. A variety of signed alternating permutations are given as follows.

- $\mathbf{S}_{n}:=\left\{\pi \in \mathfrak{S}_{n}^{ \pm}: \pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots\right\}$,
- $\mathbf{S}_{n}^{0}:=\left\{\pi \in \mathfrak{S}_{n}^{ \pm}: \pi_{1}>0\right.$ and $\left.\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots\right\}$,
- $\mathbf{D}_{n}:=\left\{\pi \in \mathfrak{S}_{n}^{D}: \pi_{1}+\pi_{2}<0\right.$ and $\left.\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots\right\}$.

Arnol'd [1] proved that $\mathbf{E}_{n}, \mathbf{S}_{n}^{0}$ and \mathbf{D}_{n} are equal to some maximum sets \mathcal{D}_{J} as introduced in Eq. (1.1) for W the Coxeter groups of types A_{n}, B_{n} and D_{n}, respectively. Therefore, the cardinalities of $\mathbf{E}_{n}, \mathbf{S}_{n}^{0}$ and \mathbf{D}_{n} are the Springer numbers of types A_{n}, B_{n} and D_{n}, respectively. Arnol'd coined the term snakes to describe the (signed) alternating

https://daneshyari.com/en/article/4624723

Download Persian Version:

https://daneshyari.com/article/4624723

Daneshyari.com

[^0]: th Partially supported by National Science Council of Taiwan under grants NSC 101-2115-M-390-004-MY3 (S.-P. Eu and Y.-H. Lo) and NSC 100-2115-M-390-004-MY2 (H. Chang).

 * Corresponding author.

 E-mail addresses: huilan0102@gmail.com (H. Chang), speu@nuk.edu.tw (S.-P. Eu), yhlo0830@gmail.com (Y.-H. Lo).

