Using functional equations to enumerate 1324-avoiding permutations

Fredrik Johansson ${ }^{\text {a }}$, Brian Nakamura ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ RISC, Johannes Kepler University, 4040 Linz, Austria
${ }^{\mathrm{b}}$ CCICADA/DIMACS, Rutgers University-New Brunswick, Piscataway, NJ, USA

A R T I C L E I N F O

Article history:

Received 13 January 2014
Accepted 24 January 2014
Available online 24 February 2014

MSC:

05 A 05
05A15

Keywords:

Permutation patterns
Functional equations
Enumeration algorithm

Abstract

We consider the problem of enumerating permutations with exactly r occurrences of the pattern 1324 and derive functional equations for this general case as well as for the pattern avoidance ($r=0$) case. The functional equations lead to a new algorithm for enumerating length n permutations that avoid 1324. This approach is used to enumerate the 1324 -avoiders up to $n=31$. We also extend those functional equations to account for the number of inversions and derive analogous algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $a_{1} \ldots a_{k}$ be a sequence of k distinct positive integers. We define the reduction of this sequence, denoted by $\operatorname{red}\left(a_{1} \ldots a_{k}\right)$, to be the length k permutation $\tau=\tau_{1} \ldots \tau_{k}$ that is order-isomorphic to $a_{1} \ldots a_{k}$ (i.e., $a_{i}<a_{j}$ if and only if $\tau_{i}<\tau_{j}$ for every i and j). Given a (permutation) pattern $\tau \in \mathcal{S}_{k}$, we say that a permutation $\pi=\pi_{1} \ldots \pi_{n}$ contains the pattern τ if there exists $1 \leqslant i_{i}<i_{2}<\cdots<i_{k} \leqslant n$ such that $\operatorname{red}\left(\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}\right)=\tau$, in which case we call $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ an occurrence of τ. We also define $N_{\tau}(\pi)$ to be the number

[^0]of occurrences of pattern τ in the permutation π. For example, if the pattern $\tau=123$, the permutation 53412 avoids the pattern τ (so $N_{123}(53412)=0$), whereas the permutation 52134 contains two occurrences of τ (so $\left.N_{123}(52134)=2\right)$.

For a pattern τ and non-negative integer $r \geqslant 0$, we define the set

$$
\mathcal{S}_{n}(\tau, r):=\left\{\pi \in \mathcal{S}_{n}: \pi \text { has exactly } r \text { occurrences of the pattern } \tau\right\}
$$

and also define $s_{n}(\tau, r):=\left|\mathcal{S}_{n}(\tau, r)\right|$. For the $r=0$ case, we say that the two patterns σ and τ are Wilf-equivalent if $s_{n}(\sigma, 0)=s_{n}(\tau, 0)$ for all n. Additionally, two patterns that are Wilf-equivalent are said to belong to the same Wilf-equivalence class. Note that the $r=0$ case corresponds with "classical" pattern avoidance, which has been well-studied. Work on the more general problem $(r \geqslant 0)$ has usually been restricted to patterns of length 3 and small r.

A little more is known for the pattern avoidance problem, but the problem quickly gets difficult. For each $\tau \in \mathcal{S}_{3}$, it is well known that $s_{n}(\tau, 0)=\frac{1}{n+1}\binom{2 n}{n}$ (the Catalan numbers) [8]. For the length 4 patterns, there are three cases (Wilf-equivalence classes) to consider: 1234, 1342, and 1324. The enumeration for the 1234 -avoiding permutations was solved by Gessel in [7]. Later, Bóna solved the case for the 1342 -avoiding permutations in [3]. The pattern 1324, however, has been notoriously difficult to enumerate.

There is currently no non-recursive formula known for computing $s_{n}(1324,0)$, and precise asymptotics are not known either. Marinov and Radoičić developed an approach in [10] using generating trees and computed $s_{n}(1324,0)$ for $n \leqslant 20$. Another approach (using insertion encoding) was used by Albert et al. in [1] to compute $s_{n}(1324,0)$ for $n \leqslant 25$ (five more terms). Given the difficulty of this pattern, Zeilberger has even conjectured that "Not even God knows $s_{1000}(1324,0)$ " [6].

Given the difficulty of exact enumeration, work has also been done on studying how the sequence $s_{n}(\tau, 0)$ grows for various patterns. We define the Stanley-Wilf limit of a pattern τ to be:

$$
\begin{equation*}
L(\tau):=\lim _{n \rightarrow \infty}\left(s_{n}(\tau, 0)\right)^{1 / n} \tag{1}
\end{equation*}
$$

Thanks to results by Arratia [2] and Marcus and Tardos [9], we know that for each pattern τ, the limit $L(\tau)$ exists and is finite. For patterns of length three, the Stanley-Wilf limit is known to be 4. Additionally, Regev [13] showed that $L(1234)=9$, while Bóna's result in [3] gives us $L(1342)=8$. The exact limit for the pattern 1324 , however, is still unknown. The best known lower bound is by Albert et al. [1], who showed that $L(1324) \geqslant 9.47$. The best known upper bound has seen some improvements in recent years. The recent "best" upper bound was improved by Claesson, Jelínek, and Steingrímsson in [5] to $L(1324) \leqslant 16$. That approach was then refined by Bóna in [4] to show that $L(1324)<(7+4 \sqrt{3}) \approx 13.93$.

Additionally, Claesson, Jelínek, and Steingrímsson conjectured that the number of length n permutations avoiding 1324 with exactly k inversions was non-decreasing in n

https://daneshyari.com/en/article/4624728

Download Persian Version:
https://daneshyari.com/article/4624728

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: fredrik.johansson@risc.jku.at (F. Johansson), bnaka@dimacs.rutgers.edu (B. Nakamura).

