

Contents lists available at ScienceDirect

Advances in Applied Mathematics

MATHEMATICS

www.elsevier.com/locate/yaama

Lattice-supported splines on polytopal complexes

Michael DiPasquale¹

Department of Mathematics, University of Illinois, Urbana, IL 61801, United States

ARTICLE INFO

Article history: Received 5 September 2013 Received in revised form 16 December 2013 Accepted 16 December 2013 Available online 13 January 2014

MSC: primary 13C05 secondary 13P25, 13C10

Keywords: Polyhedral spline Polytopal complex Localization Regularity

ABSTRACT

We study the module $C^r(\mathcal{P})$ of piecewise polynomial functions of smoothness r on a pure n-dimensional polytopal complex $\mathcal{P} \subset \mathbb{R}^n$, via an analysis of certain subcomplexes \mathcal{P}_W obtained from the intersection lattice of the interior codimension one faces of \mathcal{P} . We obtain two main results: first, we show that in sufficiently high degree, the vector space $C_k^r(\mathcal{P})$ of splines of degree $\leq k$ has a basis consisting of splines supported on the \mathcal{P}_W for $k \gg 0$. We call such splines *lattice-supported*. This shows that an analog of the notion of a star-supported basis for $C_k^r(\Delta)$ studied by Alfeld–Schumaker in the simplicial case holds [3]. Second, we provide a pair of conjectures, one involving lattice-supported splines, bounding how large k must be so that $\dim_{\mathbb{R}} C_k^r(\mathcal{P})$ agrees with the McDonald-Schenck formula [14]. A family of examples shows that the latter conjecture is tight. The proposed bounds generalize known and conjectured bounds in the simplicial case.

@ 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{P} be a subdivision of a region in \mathbb{R}^n by convex polytopes. $C^r(\mathcal{P})$ denotes the set of piecewise polynomial functions (splines) on \mathcal{P} that are continuously differentiable of order r. Study of the spaces $C^r(\mathcal{P})$ is a fundamental topic in approximation theory and numerical analysis (see [8]) while within the past decade geometric connections have been

E-mail address: dipasqu1@illinois.edu.

 $^{^1}$ Author supported by National Science Foundation grant DMS 0838434 "EMSW21MCTP: Research Experience for Graduate Students."

made between $C^0(\mathcal{P})$ and equivariant cohomology rings of toric varieties [16]. Practical applications of splines include computer aided design, surface modeling, and computer graphics [8].

A central problem in spline theory is to determine the dimension of (and a basis for) the vector space $C_k^r(\mathcal{P})$ of splines whose restriction to each facet of \mathcal{P} has degree at most k. In the bivariate, simplicial case, these questions are studied by Alfeld and Schumaker in [1] and [2] using Bernstein–Bezier methods. A signature result appears in [2], which gives a dimension formula for $C_k^r(\mathcal{P})$ when $k \ge 3r + 1$ and \mathcal{P} is a generic simplicial complex. An algebraic approach to the dimension question was pioneered by Billera in [5] using homological and commutative algebra. This method has been refined and extended by Schenck, Stillman, and McDonald ([20] and [14]). The last of these gives a polyhedral version of the Alfeld–Schumaker formula in the planar case, building on work of Rose [17,18] on dual graphs.

In applications it is often important to find a basis of $C_k^r(\mathcal{P})$ which is "locally supported" in some sense. In the simplicial case the natural thing to require is that the basis elements are supported on stars of vertices. Alfeld and Schumaker [3] call such a basis *minimally supported* or *star-supported*, and they show that for k = 3r + 1 it is not always possible to construct a star-supported basis of $C_k^r(\mathcal{P})$. However in the planar simplicial case the bases constructed for $C_k^r(\Delta)$ in [12] and [13] for $k \ge 3r + 2$ are in fact star-supported. Alfeld, Schumaker, and Sirvent show in [4] that in the trivariate case $C_k^r(\Delta)$ has a star-supported basis for k > 8r.

In this paper, we first show that there are polyhedral analogs of "star-supported splines". Our main technical tool is Proposition 3.5, which utilizes polytopal subcomplexes $\mathcal{P}_W \subset \mathcal{P}$ associated to certain linear subspaces $W \subset \mathbb{R}^n$ to give a precise description of localization of the module $C^r(\mathcal{P})$. We use this description to tie together local characterizations of projective dimension and freeness due to Yuzvinsky [22] and Billera and Rose [7]. A consequence of Proposition 3.5 is that there are generators for $C^r(\mathcal{P})$ as an $R = \mathbb{R}[x_1, \ldots, x_n]$ -module which are supported on the complexes \mathcal{P}_W . From this follows Theorem 4.4, that for $k \gg 0$, $C_k^r(\mathcal{P})$ has an \mathbb{R} -basis which is supported on subcomplexes of the form \mathcal{P}_W . We call such a basis a *lattice*-supported basis, where the lattice (in the sense of a graded poset) of interest is the intersection lattice of the interior codimension one faces of \mathcal{P} . A lattice-supported basis reduces to a star-supported basis in the simplicial case.

In Section 5 we use the regularity of a graded module to analyze $\dim_{\mathbb{R}} C_k^r(\mathcal{P})$, which is also done in [21]. We propose in Conjecture 5.4 a regularity bound on the module of locally supported splines in the case $\mathcal{P} \subset \mathbb{R}^2$. If true this conjecture gives a bound for when the McDonald–Schenck formula [14] for $\dim_{\mathbb{R}} C_k^r(\mathcal{P})$ holds which generalizes the Alfeld– Schumaker 3r + 1 bound in the planar simplicial case. We also propose (Conjecture 5.5) a stronger regularity bound on $C^r(\hat{\mathcal{P}})$ for $\mathcal{P} \subset \mathbb{R}^2$ and give a family of examples to show that this proposed bound is tight. Conjecture 5.5 generalizes a conjecture of Schenck that the Alfeld–Schumaker dimension formula [2] holds when $k \ge 2r + 1$ in the planar simplicial case [19]. Download English Version:

https://daneshyari.com/en/article/4624738

Download Persian Version:

https://daneshyari.com/article/4624738

Daneshyari.com