

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Minimum degree conditions for vertex-disjoint even cycles in large graphs $\stackrel{\bigstar}{\Rightarrow}$

Shuya Chiba^{a,*,1}, Shinya Fujita^{b,2}, Ken-ichi Kawarabayashi^{c,d,3}, Tadashi Sakuma^{e,4}

^a Department of Mathematics and Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan

^b International College of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan

^c National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan

^d JST, ERATO, Kawarabayashi Large Graph Project, Japan

^e Systems Science and Information Studies, Faculty of Education, Art and Science,

Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan

ARTICLE INFO

Article history: Received 31 December 2012 Accepted 2 December 2013 Available online 9 January 2014

MSC: 05C70

Keywords: Vertex-disjoint cycles Even cycle Theta graph Minimum degree

ABSTRACT

We prove a variant of a theorem of Corrádi and Hajnal (1963) [4] which says that if a graph G has at least 3k vertices and its minimum degree is at least 2k, then G contains k vertexdisjoint cycles. Specifically, our main result is the following. For any positive integer k, there is a constant c_k such that if G is a graph with at least c_k vertices and the minimum degree of G is at least 2k, then (i) G contains k vertex-disjoint even cycles, or (ii) $(2k-1)K_1 \vee pK_2 \subset G \subset K_{2k-1} \vee pK_2$ $(p \ge k \ge 2)$, or (iii) k = 1 and each block of G is either a K_2 or an odd cycle.

@ 2013 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: schiba@kumamoto-u.ac.jp (S. Chiba), shinya.fujita.ph.d@gmail.com (S. Fujita),

k_keniti@nii.ac.jp (K. Kawarabayashi), sakuma@e.yamagata-u.ac.jp (T. Sakuma).

- $^1\,$ This work was supported by JSPS KAKENHI grant 23740087.
- $^2\,$ This work was supported by JSPS KAKENHI grant 23740095.

0196-8858/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.aam.2013.12.001

 $^{^{\}pm}$ An extended abstract has been published in: EuroComb 2009, Electr. Notes Discrete Math., vol. 34, 2009, pp. 113–119.

 $^{^3}$ This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by C & C Foundation, by Kayamori Foundation and by Inoue Research Award for Young Scientists.

1. Introduction

In this paper, we consider only finite simple graphs. For terminology and notation not defined in this paper, we refer the readers to [5]. Let G be a graph. We denote by V(G), E(G), $\delta(G)$ and $\Delta(G)$ the vertex set, the edge set, the minimum degree and the maximum degree of G, respectively. We refer to the cardinality of V(G) as the order of G and denote it by |G|. For a graph H, if H is a subgraph of G, then we write $H \subset G$. Subgraphs of G are said to be vertex-disjoint if no two of them have any common vertex in G. For $X \subseteq V(G)$, we let G[X] denote the subgraph of G induced by X, and let $G - X = G[V(G) \setminus X]$. For $H \subset G$, let G - H = G - V(H).

Packing and covering is one of the central areas in both graph theory and theoretical computer science. The starting point of this research area goes back to the following well-known theorem due to Erdős and Pósa [7] in early 1960s.

Theorem A. (See Erdős and Pósa [7].) For any integer k with $k \ge 1$ and any graph G, either G contains k vertex-disjoint cycles or a vertex set X of order at most f(k) (for some function f of k) such that G - X is a forest.

In fact, Theorem A gives rise to the well-known Erdős–Pósa property. A family \mathcal{F} of graphs is said to have the *Erdős–Pósa property*, if for every integer $k \ge 1$, there is an integer $f(k, \mathcal{F})$ such that every graph G contains either k vertex-disjoint subgraphs each isomorphic to a graph in \mathcal{F} or a set X of at most $f(k, \mathcal{F})$ vertices such that G - X has no subgraph isomorphic to a graph in \mathcal{F} . The term Erdős–Pósa property arose because of Theorem A which proves that the family of cycles has this property.

Theorem A concerns both "packing", i.e., k vertex-disjoint cycles, and "covering", i.e., a set of at most f(k) vertices that hits all the cycles in G. Starting with this result, there are a lot of the results in this direction. Packing appears almost everywhere in extremal graph theory, while covering leads to the well-known concept "feedback set" in theoretical computer science. Also, the cycle packing problem, which asks whether or not there are k vertex-disjoint cycles in an input graph G, is a well-known problem, e.g. [12].

In graph theory, there are many results concerning packing cycles. The following is the well-known theorem due to Corrádi and Hajnal [4] in 1960s.

Theorem B. (See Corrádi and Hajnal [4].) Let k be an integer with $k \ge 1$, and let G be a graph of order at least 3k. If $\delta(G) \ge 2k$, then G contains k vertex-disjoint cycles.

Theorem B tells us that if we assumed that the minimum degree of a given graph is at least 2k, then the covering result in Theorem A would not happen. In view of Theorems A and B, we would like to discuss how a parity condition on the cycles affects Theorems A

⁴ This work was supported by JSPS KAKENHI.

Download English Version:

https://daneshyari.com/en/article/4624753

Download Persian Version:

https://daneshyari.com/article/4624753

Daneshyari.com