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We prove a variant of a theorem of Corrádi and Hajnal (1963)
[4] which says that if a graph G has at least 3k vertices and
its minimum degree is at least 2k, then G contains k vertex-
disjoint cycles. Specifically, our main result is the following.
For any positive integer k, there is a constant ck such that
if G is a graph with at least ck vertices and the minimum
degree of G is at least 2k, then (i) G contains k vertex-disjoint
even cycles, or (ii) (2k − 1)K1 ∨ pK2 ⊂ G ⊂ K2k−1 ∨ pK2
(p � k � 2), or (iii) k = 1 and each block of G is either a K2
or an odd cycle.
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1. Introduction

In this paper, we consider only finite simple graphs. For terminology and notation
not defined in this paper, we refer the readers to [5]. Let G be a graph. We denote by
V (G), E(G), δ(G) and Δ(G) the vertex set, the edge set, the minimum degree and the
maximum degree of G, respectively. We refer to the cardinality of V (G) as the order of
G and denote it by |G|. For a graph H, if H is a subgraph of G, then we write H ⊂ G.
Subgraphs of G are said to be vertex-disjoint if no two of them have any common vertex
in G. For X ⊆ V (G), we let G[X] denote the subgraph of G induced by X, and let
G−X = G[V (G) \X]. For H ⊂ G, let G−H = G− V (H).

Packing and covering is one of the central areas in both graph theory and theoretical
computer science. The starting point of this research area goes back to the following
well-known theorem due to Erdős and Pósa [7] in early 1960s.

Theorem A. (See Erdős and Pósa [7].) For any integer k with k � 1 and any graph G,
either G contains k vertex-disjoint cycles or a vertex set X of order at most f(k) (for
some function f of k) such that G−X is a forest.

In fact, Theorem A gives rise to the well-known Erdős–Pósa property. A family F of
graphs is said to have the Erdős–Pósa property, if for every integer k � 1, there is an
integer f(k,F) such that every graph G contains either k vertex-disjoint subgraphs each
isomorphic to a graph in F or a set X of at most f(k,F) vertices such that G−X has
no subgraph isomorphic to a graph in F . The term Erdős–Pósa property arose because
of Theorem A which proves that the family of cycles has this property.

Theorem A concerns both “packing”, i.e., k vertex-disjoint cycles, and “covering”,
i.e., a set of at most f(k) vertices that hits all the cycles in G. Starting with this result,
there are a lot of the results in this direction. Packing appears almost everywhere in
extremal graph theory, while covering leads to the well-known concept “feedback set”
in theoretical computer science. Also, the cycle packing problem, which asks whether or
not there are k vertex-disjoint cycles in an input graph G, is a well-known problem, e.g.
[12].

In graph theory, there are many results concerning packing cycles. The following is
the well-known theorem due to Corrádi and Hajnal [4] in 1960s.

Theorem B. (See Corrádi and Hajnal [4].) Let k be an integer with k � 1, and let G be
a graph of order at least 3k. If δ(G) � 2k, then G contains k vertex-disjoint cycles.

Theorem B tells us that if we assumed that the minimum degree of a given graph is at
least 2k, then the covering result in Theorem A would not happen. In view of Theorems A
and B, we would like to discuss how a parity condition on the cycles affects Theorems A
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