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1. Introduction and statements of results

The transition probability matrix so-called ‘amazing matrix’ of the Markov chain of the ‘carries’
has very nice properties [5], and has unexpected connection to the Markov chains of riffle shuffles [2,
3]. Diaconis and Fulman [3] studies a variant of the carries process, type B carries process. Novelli
and Thibon studies the carries process in terms of noncommutative symmetric functions [7]. This
paper studies a generalization of the carries process which includes Diaconis and Fulman’s type B
carries process as a special case. We study the transition probability matrices of the Markov chains
of the carries in the numeration systems with non-standard digit sets. We show that the matrices
have the eigenvectors which can be perfectly described by a generalization of Eulerian numbers and
the MacMahon numbers [8,6,1,3]. We also show that similar properties hold even for the numeration
systems with negative bases.
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Fig. 1. Carries process.

1.1. Numeration system
Throughout the paper, b denotes a positive integer and D ={d,d+1,...,d +b — 1} denotes a set

of integers containing 0. Therefore, —b < d < b. Then, we have a numeration system (b, D): Suppose
that an integer x has a representation of the form,

d
X= (X1 X0)b 2 Xo 4 X1b 4 Xob? + - +xbK, X0. X1, ... X €D, X #£0. (1)
Then, it can be easily shown that this representation is uniquely determined for x and
Z d#0,-b+1,
{axk—1 - x0)p | K= 0,%0,%1, ...,k €D} ={N d=0,
—-N d=-b+1
is closed under the addition, where N denotes the set of non-negative integers.
1.2. Carries process
Let {Xi jligign,j>0 be the set of independent random variables each of which is distributed
uniformly over D. Define the two stochastic processes (Ag, A1, Aa,...) and (Cp, C1,C3,...) in the
following way: Co = 0 with probability one. (A;)j>o is a sequence of D-valued random variables sat-
isfying
Ai=Ci+Xq1i+---+Xpi (modb), i=0,1,2,...,

and

G+ Xiim1 4+ Xnio1 — Ai

G b , 1=1,2,3,....

(See Fig. 1.) It is obvious that (Cg, Cq, C2,...) is a Markov process, which we call the carries process
with n summands or simply n-carry process over (b, D).

1.3. A generalization of Eulerian numbers
Let p > 1 be a real number and n a positive integer. Then we define an array of numbers v?ﬂ) n)

fori=0,1,...,nand j=0,1,...,n+1 by

/ 1 n—i
viP(n) = Z(—Uf(”f )[p(j -n+1]"" (2)
r=0
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