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In [S. Ferenczi, Rank and symbolic complexity, Ergodic Theory
Dynam. Systems 16 (1996) 663–682], S. Ferenczi proved that the
language of any uniformly recurrent sequence with an at most
linear complexity is S-adic. In this paper we adapt his proof in
a more structured way and improve this result stating that any
such sequence is itself S-adic. We also give some properties on the
constructed morphisms.
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1. Introduction

A usual tool in the study of sequences (or infinite words) over a finite alphabet A is the complexity
function p that counts the number of factors of each length n occurring in the sequence. This function
is clearly bounded by dn , n ∈ N, where d is the number of letters in A but not all functions bounded
by dn are complexity functions. As an example, it is well known (see [19]) that either the sequence
is ultimately periodic (and then p(n) is ultimately constant), or its complexity function grows at least
like n + 1. Non-periodic sequences with minimal complexity p(n) = n + 1 for all n exist and are
called Sturmian sequences (see [19]). These words are binary sequences (because p(1) = 2) and admit
several equivalent definitions: aperiodic balanced sequences, codings of rotations, mechanical words
of irrational slope, etc. See Chapter 2 of [18] and Chapter 6 of [17] for surveys on these sequences. In
particular, it is well known that all these sequences can be generated with only three morphisms.

Many other known sequences have a low complexity. By “low complexity” we usually mean
“complexity bounded by a linear or affine function”. Fixed points of primitive substitutions, auto-
matic sequences, linearly recurrent sequences (see [12]) and Arnoux–Rauzy sequences are exam-
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ples of sequences with an at most affine complexity. For any such sequence w, there exists a
finite set S of morphisms over an alphabet A, a letter a and a sequence (σn)n∈N ∈ SN such that
w = limn→∞ σ0 · · ·σn(aω). Indeed, automatic sequences can be seen as images under letter-to-letter
morphisms of fixed points of uniform substitutions (see [1]), F. Durand proved it in [10] and [11] for
linearly recurrent sequences and P. Arnoux and G. Rauzy proved it in [2] for the so-called Arnoux–
Rauzy sequences. Following [17], a sequence w with previous property is said to be S-adic (where S
refers to the set of morphisms).

As mentioned in [17], the S-adic conjecture is the existence of a condition C such that “a sequence
has an at most linear complexity if and only if it is an S-adic sequence verifying C”. It is not possible to avoid
considering a particular condition since, for instance, there exist fixed points of morphisms with a
quadratic complexity (see [20]) and moreover, J. Cassaigne recently showed that there exists a finite
set S of morphisms over an alphabet A ∪ {l} (where l is a special letter that does not belong to the
alphabet A) such that any sequence over A is S-adic (see [8]).

In [16], before Cassaigne’s constructions, S. Ferenczi used some other techniques to prove a kind of
“only if” part of the conjecture for a weaker version of S-adicity. Indeed, he proved that the language
of a uniformly recurrent sequence w with an at most linear complexity is S-adic in the sense that
for any factor u of w, there is a non-negative integer n such that u is a factor of σ0σ1 · · ·σn(a)

with σ0σ1 · · ·σn ∈ S∗ . Theorem 1.2 states precisely this result which was originally expressed in terms
of symbolic dynamical systems. In this paper, we avoid the language of dynamical systems and try
to highlight all the key points of the proof of Theorem 1.2. Then, adapting Ferenczi’s methods, we
improve this result by proving Theorem 1.1 and give some properties on the S-adic representation
that could help stating the condition C. In particular, we show that the constructions used make sense
in a more general case and are particularly efficient for sequences with an at most linear complexity.

Theorem 1.1. Let w be an aperiodic and uniformly recurrent sequence over an alphabet A. If w has an at most
affine complexity then w is an S-adic sequence satisfying Properties 1–5 (see Section 6.2) for a finite set S of
non-erasing morphisms such that for all letters a in A, the length of σ0σ1 · · ·σn(a) tends to infinity with n with
(σn)n ∈ SN (this property will be called the ω-growth Property).

Theorem 1.2. (See Ferenczi [16].) Let w be an aperiodic and uniformly recurrent sequence over an alpha-
bet A with an at most affine complexity. There exist a finite number of morphisms σi , 1 � i � c, over an
alphabet D = {0, . . . ,d − 1}, an application α from D to A and an infinite sequence (in)n∈N ∈ {1, . . . , c}N

such that inf0�r�d−1 |σi0σi1 · · ·σin (r)| tends to infinity if n tends to infinity and any factor of w is a factor of
ασi0σi1 · · ·σin (0) for some n.

This paper is organized as follows. Section 2 recalls the definition of S-adicity. In Section 3, we
present some results and examples about the conjecture and about the complexity of some particular
S-adic sequences. In particular, using a technique similar to the technique in [13] we give an upper
bound for the complexity of some S-adic sequences. Section 4 deals with Rauzy graphs. We recall
their definition and explain how they evolve. Section 5 presents Ferenczi’s methods in a general case
and Section 6 gives the proof of Theorem 1.1. We conclude the paper with some remarks in Section 7.

2. S-adicity

Let us recall some basic definitions.
An alphabet is a finite set A whose elements are called letters (or symbols). A word u over A is a

finite sequence of elements of A. The length � of a word u = u1 · · · u� is the number of letters of u;
it is denoted by |u|. The unique word of length 0 is called the empty word and is denoted by ε. The
set of words of length � over A is denoted by A� and A∗ = ⋃

�∈N
A� denotes the set of words over A.

The set A∗ \ {ε} of non-empty words over A is denoted by A+ . The concatenation of two words u and
v is simply the word uv; un is the concatenation of n copies of u. With concatenation, A∗ is the free
monoid generated by A.

A sequence (or right infinite word) over A is an element of AN . Recall that with the product topology,
the set of sequences AN is a compact metric space. In the sequel, sequences will be denoted by bold
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