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We define and study biorthogonal sequences of polynomials
over noncommutative rings, generalizing previous treatments of
biorthogonal polynomials over commutative rings and of orthog-
onal polynomials over noncommutative rings. We extend known
recurrence relations for specific cases of biorthogonal polynomials
and prove a general version of Favard’s theorem.
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1. Introduction

The theory of orthogonal polynomials is well established and has many applications. For any
sequence {Si} of elements of a commutative ring R , we can define a biadditive function 〈· , ·〉 :
R[x] × R[x] → R by 〈axi,bx j〉 = abSi+ j for a,b ∈ R and define a sequence of polynomials {pn} by

pn =
∣∣∣∣∣∣

Sn · · · S2n−1 xn

...
. . .

...
...

S0 · · · Sn−1 1

∣∣∣∣∣∣ .

Then 〈pn, pm〉 = 0 if and only if n �= m, i.e. the sequence {pn} is orthogonal. The Si are called the
moments of {pn}. For a more detailed introduction see either [3] or [13], Chihara’s and Szego’s clas-
sic texts on the subject. The idea of orthogonal polynomials and this method of generating them
has been generalized in two ways to achieve new types of polynomials: noncommutative orthogonal
polynomials and biorthogonal polynomials.
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The theory of orthogonal polynomials has been extended to cover rings of noncommutative op-
erators, in particular matrices. The study of orthogonal matrix polynomials started with Krein, for
instance in [10] and [11], and developed significantly in the mid 1990s; for example in [4,5,12,6] by
Duran, Van Assche and others. In [8], Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon, using the
notion of quasideterminants introduced in [9] (see also [7]), extended the theory to general noncom-
mutative rings by setting pn equal to the quasideterminant of a similar matrix. The paper also shows
that the 3-term recurrence relation, which is well-known for commutative orthogonal polynomials,
still holds in this case.

Second, orthogonal polynomials have been generalized in several ways to biorthogonal polyno-
mials. See [2] for more details on these generalizations. One such extension is considered in [1]
by Bertola, Gekhtman and Szmigielski. A family of biorthogonal polynomials is defined to be
two sequences of real polynomials {pn(x)} and {qm(y)} with the property that∫∫

pn(x)qm(y)K (x, y)dα(x)dβ(y) = 0 when n �= m for particular K , α and β . In this paper, it is shown
that these polynomials can be represented as determinants of matrices whose entries are bimoments
and, for a specific K (x, y), a 4-term recurrence relation is obtained.

Here, we define biorthogonal polynomials over a noncommutative ring. We bring together the two
different generalizations described above to present a completely algebraic definition of noncommu-
tative biorthogonal polynomials. For our purposes, a biorthogonal family consists of two sequences of
polynomials {pn(x)} and {qn(y)}, over a division ring R , along with a function 〈· , ·〉: R[x] × R[y] → R
so that 〈pn(x),qm(y)〉 = 0 for all n �= m. Using this definition, we obtain recurrence relations for some
types of biorthogonal polynomials and thus generalize the 4-term recurrence relations of [1]. We
conclude with a broad extension of Favard’s theorem.

2. Set-up and definitions

Let R be a division ring with center C . We will view R[x] as an R-C bimodule of R and R[y] as a
C-R bimodule of R . That is, elements of R[x] will be of the form

∑
ai xi and elements of R[y] will be

of the form
∑

y jb j so that xc = cx and yc = cy for all c ∈ C . Let 〈· , ·〉 : R[x] × R[y] → R so that

〈∑
aix

i,
∑

y jb j

〉
=

∑
ai

〈
xi, y j 〉b j.

A system of polynomials {pn}, {qn}n∈N is biorthogonal with respect to 〈· , ·〉 if 〈pn(x),qm(y)〉 = 0 for all
n �= m.

Let Ia,b = 〈xa, yb〉. The set I = {Ia,b}a,b∈Z�0 is called the set of bimoments for 〈· , ·〉. The bimoments
completely define the function 〈· , ·〉 so we will say that a set of polynomials is biorthogonal with
respect to I . In keeping with the notation of [1], we will let I be the matrix of bimoments and write
Id for the identity matrix. Note in these cases, and below, all matrices and vectors are infinite, with
rows and columns indexed by Z�0.

We extend 〈· , ·〉 to R[x]n × R[y] and to R[x] × R[y]n in the following way:

if B =
⎡
⎣b1

...

bn

⎤
⎦ ∈ R[x]n and g ∈ R[y], then 〈B, g〉 =

⎡
⎣ 〈b1, g〉

...

〈bn, g〉

⎤
⎦ .

Similarly,

if f ∈ R[x] and D =
⎡
⎣d1

...

dn

⎤
⎦ ∈ R[y]n, then 〈 f , D〉 =

⎡
⎣ 〈 f ,d1〉

...

〈 f ,dn〉

⎤
⎦ .

If C ∈ Matr×n(R), B ∈ R[x]n and g ∈ R[y], then 〈C B, g〉 = C〈B, g〉.
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