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a b s t r a c t 

A new discrete spline method is developed to solve the two point fractional Bagley–Torvik 

equation.The method is based on discrete spline function and a nonstandard Grünwald–

Letnikov difference (NSGD) and the weighted and shifted Grünwald–Letnikov difference 

(WSGD) operators to approximate the fractional derivative. Bounds for Grünwald–Letnikov 

weights are considered. Convergence analysis is discussed and a class of second order and 

third order methods are obtained. Illustrative examples are presented to validate the prac- 

tical usefulness of the methods. 
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1. Introduction 

We consider the following Bagley–Torvik equation: 

u 

(2) (x ) + θ D 

αu (x ) + σu (x ) = f (x ) , m − 1 ≤ α < m , x ∈ [0 , 1] , (1) 

subject to boundary conditions: 

u (0) = u (1) = 0 , (2) 

where the function f ( x ) is continuous on the interval [0, 1] and the operator D 

α represents the Caputo fractional derivative. 

In general, this type of fractional boundary value problem arises in many applications in science and engineering such 

as viscoelasticity, fluid mechanics, vibration, digital control theory, biology, and bioengineering. 

There are a lot of papers in the literature dealing with initial fractional Bagley–Torvik equation, We may refer to 

[2–4,9,10,12,13,17,19,29] . Fitt et al. [7] developed a fractional mathematical model for micro-electro-mechanical system 

(MEMS) instrument to measure the viscosity of fluids during the process of oil well exploration. Mashayekhi and Razza- 

ghi [34] , introduced a numerical method for solving the initial fractional Bagley–Torvik equation, this method is based upon 

block-pulse functions and Bernoulli polynomials. In [24] Yüzbasi presented a numerical technique for solving the Bagley–

Torvik equation via a generalized form of the Bessel functions of the first kind. Ray [35] , solved initial fractional Bagley–

Torvik equation by operational matrix of Haar wavelet method. Gülsu et. al. [33] , presented a numerical solution method to 

approximate the solution of the initial Bagley–Torvik equation of fractional order in terms of the generalized Taylor series. 

Gómez et al. [8] discussed the fractional mass-spring-damper system of the Caputo type and introduced a parameter that 

∗ Corresponding author at: Department of Engineering Physics and Mathematics, Faculty of Engineering, Tanta University, Tanta, Egypt. 

E-mail addresses: waheed.zahra@ugent.be , waheed_zahra@yahoo.com (W.K. Zahra), marnix.vandaele@ugent.be (M. Van Daele). 

http://dx.doi.org/10.1016/j.amc.2016.09.016 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.09.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.09.016&domain=pdf
mailto:waheed.zahra@ugent.be
mailto:waheed_zahra@yahoo.com
mailto:marnix.vandaele@ugent.be
http://dx.doi.org/10.1016/j.amc.2016.09.016


W.K. Zahra, M. Van Daele / Applied Mathematics and Computation 296 (2017) 42–56 43 

characterized the existence of fractional components in the system. In [25] , Wang and Wang investigated the general solu- 

tion of the initial value Bagley–Torvik equation by changing it into a sequential fractional differential equation with constant 

coefficients. Then the general solution is expressed as the linear combination of fundamental solutions that are in terms of 

α-exponential functions. Scherer et. al. [20] , devoted a numerical treatment of initial fractional differential equations using 

Grünwald–Letnikov definition of fractional derivatives and discussed the asymptotic stability and the absolute stability of the 

proposed methods. Cérmák and Kisela [32] , discussed in details stability and asymptotic properties of the initial fractional 

Bagley–Torvik equation for the exact as well as numerical solutions obtained by using Grünwald–Letnikov discretization of 

the problem. 

On the other hand , the literature contains little on solving two point boundary value Bagley–Torvik equations. Stanek 

[21] discussed existence and uniqueness results for two point boundary value Bagley–Torvik equation. Also, in Stynes and 

Gracia [22] another class of two-point boundary value problem whose highest order term is a Caputo fractional derivative 

of order δ ∈ (1, 2) is discretized using a finite difference method. Dimitrov [5] used a combination of Grünwald–Letnikov 

and shifted Grünwald–Letnikov to propose a second order and third order approximations for the Caputo fractional deriva- 

tive and then used these approximations to solve diffusion problems. Also, Tian et. al. [23] discussed a class of second order 

difference approximations based on the weighted and shifted Grünwald–Letnikov difference operators for Riemann–Liouville 

fractional derivative with their applications to solve space fractional diffusion equations. Finally, Zhao-peng et. al. [31] de- 

rived a fourth order difference approximations for Riemann–Liouville fractional derivative and applied this method to solve 

the space fractional diffusion equations. For more details about the approximations of the space fractional derivatives, we 

may refer to [5,23,31] and the reference therein. In Zahra and Elkholy [26,28] , the authors introduced two techniques for 

solving the Bagley–Torvik equation with initial and boundary conditions. The first approach is based on transforming the 

fractional derivative into a system of ordinary differential equations and then using cubic polynomial spline with shooting 

method to find the approximate solution of the problem. The second one depends on approximating the fractional term 

using the Grünwald–Letnikov definition of the fractional derivative. Also, in Zahra and Elkholy [27] quadratic polynomial 

spline function was considered to find an approximate solution for a class of boundary value problems of fractional order. 

As we know a continuous spline function needs derivatives at some points. But, in the real world, it may be difficult to 

compute the derivatives and in that case usual spline will not be suitable. So the main object of this paper is to construct 

new discrete spline Numerov methods based on central differences to obtain an approximation for the solution of fractional 

boundary value problem (1 and 2). In Lyche [11] , most of the theory of polynomial splines deals with the case where the 

pieces are tied together by continuity of certain derivatives at the knots but in discrete spline the ties will involve differ- 

ences instead of derivatives. For more details about discrete spline, see [1,6,11,30] and the references therein. The paper is 

organized as follows: In Section 2 , we briefly review the main definitions of fractional derivatives and the discrete cubic 

spline function. Derivation of the method and convergence analysis are discussed in Section 3 . Numerical results are pre- 

sented to illustrate the applicability and accuracy in Section 4 . Finally, in Section 5 we conclude the results of the proposed 

methods. 

2. Basic definitions 

In this section, we illustrate the basic definitions and properties in the theory of fractional calculus; moreover we intro- 

duce the principle of discrete cubic spline [1,11] . 

2.1. Fractional calculus 

There are many approaches for fractional derivatives, we focus our attention to the following definitions, see [4,9,12,16,18] . 

Definition 1. The Riemann–Liouville (R–L) fractional derivative of y ( t ) is: 

R D 

α y (t) = 

{ 

1 

�(n − α) 

d m 

dt m 

∫ t 

a 

(t − τ ) m −α−1 y (τ ) dτ, m − 1 ≤ α < m 

y (m ) (t) , α = m, 

(3) 

where �(.) is the gamma function, m = � α� is the smallest integer such that m >α and d m / dx m denotes the standard deriva- 

tives of integer order. 

Definition 2. The Caputo fractional derivative of y ( t ) is: 

D 

α y (t) = 

{ 

1 

�(n − α) 

∫ t 

a 

y (m ) (τ ) 

(t − τ ) −m + α+1 
dτ, m − 1 ≤ α < m 

y (m ) (t) , α = m. 

(4) 

Relation between Riemann–Liouville and Caputo operators 

The Caputo operator D 

α has advantages for fractional differential equations (FDEs) with initial conditions. It is possible 

to couple fractional differential equations in the sense of Caputo with classical initial conditions while FDEs in the sense 

of Riemann–Liouville are accompanied with initial conditions expressed in fractional derivatives. Since there is no clear 
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