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a b s t r a c t 

This paper presents a canonical d.c. (difference of canonical and convex functions) pro- 

gramming problem, which can be used to model general global optimization problems 

in complex systems. It shows that by using the canonical duality theory, a large class 

of nonconvex minimization problems can be equivalently converted to a unified concave 

maximization problem over a convex domain, which can be solved easily under certain 

conditions. Additionally, a detailed proof for triality theory is provided, which can be used 

to identify local extremal solutions. Applications are illustrated and open problems are 

presented. 

© 2016 Elsevier Inc. All rights reserved. 

1. Problems and motivation 

It is known that in Euclidean space every continuous global optimization problem on a compact set can be reformulated 

as a d.c. optimization problem, i.e. a nonconvex problem which can be described in terms of d.c. functions (difference of 

convex functions) and d.c. sets (difference of convex sets) [37] . By the fact that any constraint set can be equivalently relaxed 

by a nonsmooth indicator function, general nonconvex optimization problems can be written in the following standard d.c. 

programming form 

min { f (x ) = g(x ) − h (x ) | ∀ x ∈ X } , (1) 

where X = R 

n , g ( x ), h ( x ) are convex proper lower-semicontinuous functions on R 

n , and the d.c. function f ( x ) to be optimized 

is usually called the “objective function” in mathematical optimization. A more general model is that g ( x ) can be an arbitrary 

function [37] . Clearly, this d.c. programming problem is artificial. Although it can be used to “model” a very wide range of 

mathematical problems [24] and has been studied extensively during the last thirty years (cf. [25,34,39] ), it comes at a price: 

it is impossible to have an elegant theory and powerful algorithms for solving this problem without detailed structures on 

these arbitrarily given functions. As the result, even some very simple d.c. programming problems are considered as NP-hard 

[37] . This dilemma is mainly due to the existing gap between mathematical optimization and mathematical physics. 

1.1. Objectivity and multi-scale modeling 

Generally speaking, the concept of objectivity used in our daily life means the state or quality of be- 

ing true even outside of a subject’s individual biases, interpretations, feelings, and imaginings (see Wikipedia at 
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https://en.wikipedia.org/wiki/Objectivity _ (philosophy) ). In science, the objectivity is often attributed to the property of sci- 

entific measurement, as the accuracy of a measurement can be tested independent from the individual scientist who first 

reports it, i.e. an objective function does not depend on observers. In Lagrange mechanics and continuum physics, a real- 

valued function W : X → R is said to be objective if and only if (see [9] , Chapter 6) 

W (x ) = W (Rx ) ∀ x ∈ X , ∀ R ∈ R , (2) 

where R is a special rotation group such that R −1 = R T , det R = 1 , ∀ R ∈ R . 

Geometrically, an objective function does not depend on the rotation, but only on certain measure of its variable. The 

simplest measure in R 

n is the � 2 norm ‖ x ‖ , which is an objective function since ‖ Rx ‖ 2 = (Rx ) T (Rx ) = x T R T Rx = ‖ x ‖ 2 for 

all special orthogonal matrix R ∈ SO ( n ). By Cholesky factorization, any positive definite matrix has a unique decomposition 

C = D 

∗D . Thus, any convex quadratic function is objective. It was emphasized by Ciarlet in his recent nonlinear analysis 

book [4] that the objectivity is not an assumption, but an axiom. Indeed, the objectivity is also known as the axiom of 

frame-invariance in continuum physics (see p. 8 in [27] and p. 42 in [35] ). Although the objectivity has been well-defined in 

mathematical physics, it is still subjected to seriously study due to its importance in mathematical modeling (see [30–32] ). 

Based on the original concept of objectivity, a multi-scale mathematical model for general nonconvex systems was 

proposed by Gao in [9,17] : 

(P) : inf { �(x ) = W (Dx ) − F (x ) | ∀ x ∈ X } , (3) 

where X is a feasible space; F : X → R ∪ {−∞} is a so-called subjective function , which is linear on its effective domain 

X a ⊂ X , wherein, certain “geometrical constraints” (such as boundary/initial conditions, etc.) are given; correspondingly, 

W : Y → R ∪ {∞} is an objective function on its effective domain Y a ⊂ Y, in which, certain physical constraints (such as 

constitutive laws, etc.) are given; D : X → Y is a linear operator which assign each decision variable in configuration 

space X to an internal variable y ∈ Y at different scale. By Riesz representation theorem, the subjective function can 

be written as F (x ) = 〈 x, ̄x ∗〉 ∀ x ∈ X a , where x̄ ∗ ∈ X 

∗ is a given input (or source), the bilinear form 〈 x, x ∗〉 : X × X 

∗ → R 

puts X and X 

∗ in duality. Additionally, the positivity conditions W (y ) ≥ 0 ∀ y ∈ Y a , F (x ) ≥ 0 ∀ x ∈ X a and coercivity 

condition lim ‖ y ‖→∞ 

W (y ) = ∞ are needed for the target function �( x ) to be bounded below on its effective domain 

X c = { x ∈ X a | Dx ∈ Y a } [17] . Therefore, the extremality condition 0 ∈ ∂�( x ) leads to the equilibrium equation [9] 

0 ∈ D 

∗∂W (Dx ) − ∂F (x ) ⇔ D 

∗y ∗ − x ∗ = 0 ∀ x ∗ ∈ ∂F (x ) , y ∗ ∈ ∂W (y ) . (4) 

In this model, the objective duality relation y ∗ ∈ ∂W ( y ) is governed by the constitutive law, which depends only on 

mathematical modeling of the system; the subjective duality relation x ∗ ∈ ∂F ( x ) leads to the input x̄ ∗ of the system, which 

depends only on each given problem. Thus, (P) can be used to model general problems in multi-scale complex systems. 

1.2. Real-world problems 

In management science the variable x ∈ X a ⊂ R 

n could represent the products of a manufacture company. Its dual variable 

x̄ ∗ ∈ R 

n can be considered as market price (or demands). Therefore, the subjective function F (x ) = x T x̄ ∗ in this example is 

the total income of the company. The products are produced by workers y ∈ R 

m . Due to the cooperation, we have y = Dx 

and D ∈ R 

m ×n is a matrix. Workers are paid by salary y ∗ = ∂W (y ) , therefore, the objective function W ( y ) in this example is 

the cost. Thus, �(x ) = W (Dx ) − F (x ) is the total loss or target and the minimization problem (P) leads to the equilibrium 

equation D 

T ∂ y W (Dx ) = x̄ ∗. The cost function W ( y ) could be convex for a very small company, but usually nonconvex for big 

companies. 

In Lagrange mechanics, the variable x ∈ X = C 1 [ I; R 

n ] is a continuous vector-valued function of time t ∈ I ⊂ R , its compo- 

nents { x i (t) } (i = 1 , . . . , n ) are known as the Lagrange coordinates. The subjective function in this case is a linear functional 

F (x ) = 

∫ 
I x (t ) T x̄ ∗(t ) dt , where x̄ ∗(t) is a given external force field. While W ( Dx ) is the so-called action: 

W (Dx ) = 

∫ 
I 

L (x, ˙ x ) dt, L = T ( ̇ x ) − V (x ) , (5) 

where T is the kinetic energy density, V is the potential density, and L = T − V is the standard Lagrangian density [29] . The 

linear operator Dx = { ∂ t , 1 } x = { ̇ x , x } is a vector-valued mapping. The kinetic energy T must be an objective function of the 

velocity (quadratic for Newton’s mechanics and convex for Einstein’s relativistic theory) [9] , while the potential density V 

could be either convex or nonconvex, depending on each problem. Together, �(x ) = W (Dx ) − F (x ) is called total action . The 

extremality condition ∂�(x ) = 0 leads to the well-known Euler–Lagrange equation 

D 

∗∂W (Dx ) = ∂ ∗t 
dT ( ̇ x ) 

d ̇ x 
− dV (x ) 

dx 
= x̄ ∗, (6) 

where ∂ ∗t is an adjoint operator of ∂ t . For convex Hamiltonian systems, both T and V are convex, thus, the least action 

principle leads to a typical d.c. minimization problem 

inf { �(x ) = K(∂ t x ) − P (x ) } , K(y ) = 

∫ 
I 

T (y ) dt, P (x ) = 

∫ 
I 

[ V (x ) + x T x̄ ∗] dt, (7) 

https://en.wikipedia.org/wiki/Objectivity_(philosophy)
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