Convergence rate results for steepest descent type method for nonlinear ill-posed equations

Santhosh George*, M. Sabari
Department of Mathematical and Computational Sciences, NIT Karnataka, Mangaluru 575 025, India

A R T I C L E I N F O

MSC:

65J15
65J20
47H17

Keywords:

Nonlinear ill-posed problem
Steepest descent method
Minimal error method
Regularization method
Discrepancy principle

Abstract

Convergence rate result for a modified steepest descent method and a modified minimal error method for the solution of nonlinear ill-posed operator equation have been proved with noisy data. To our knowledge, convergence rate result for the steepest descent method and minimal error method with noisy data are not known. We provide a convergence rate results for these methods with noisy data. The result in this paper are obtained under less computational cost when compared to the steepest descent method and minimal error method. We present an academic example which satisfies the assumptions of this paper.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Steepest descent method is used extensively (see [1-8] for linear ill-posed equations and [11,13] for nonlinear ill-posed equations) for solving ill-posed operator equations. In this study we consider a modified steepest descent method and a modified minimal error method for approximately solving the operator equation

$$
\begin{equation*}
F(x)=y \tag{1.1}
\end{equation*}
$$

where $F: D(F) \subseteq X \rightarrow Y$ is a nonlinear Fréchet differentiable operator between the Hilbert spaces X and Y. Let $D(F),\langle.,$.$\rangle and$ $\|$.$\| , respectively stand for the domain of F$, inner product and norm which can always be identified from the context in which they appear. Fréchet derivative of F is denoted by $F^{\prime}($.$) and its adjoint by F^{\prime}(.)^{*}$. Further we assume that Eq. (1.1) has a solution \hat{x}, which is not depending continuously on the right-hand side data y, i.e., (1.1) is ill-posed.

It is assumed further that we have only approximate data $y^{\delta} \in Y$ with

$$
\left\|y-y^{\delta}\right\| \leq \delta
$$

Steepest descent method was considered by Scherzer [13], Neubauer and Scherzer [11] for approximately solving (1.1). In general, steepest-descent method for (1.1) can be written as

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} s_{k} \tag{1.2}
\end{equation*}
$$

where s_{k} is the search direction taken as the negative gradient of the minimization functional involved and α_{k} is the descent. For solving Eq. (1.1) with y^{δ} in place of y, method (1.2) was studied by Scherzer [13] when $s_{k}=-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y^{\delta}\right)$ and $\alpha_{k}=\frac{\left\|s_{k}\right\|^{2}}{\left\|F^{\prime}\left(x_{k}\right) * s_{k}\right\|^{2}}$. For linear operator F, Gilyazov [10] studied (α-process) method (1.2) when $s_{k}=-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y^{\delta}\right)$

[^0]and $\alpha_{k}=\frac{\left\langle\left(F^{*} F\right)^{\alpha} S_{k}, S_{k}\right\rangle}{\left\langle\left(F^{*} F\right)^{\alpha} s_{k}, F^{*} F s_{k}\right\rangle}$. Vasin [14] considered a regularized version of the steepest descent method in which $s_{k}=-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y^{\delta}\right)+\alpha\left(x_{k}-x_{0}\right)$ and $\alpha_{k}=\frac{\left\|s_{k}\right\|^{2}}{\left\|F^{\prime}\left(x_{k}\right) s_{k}\right\|^{2}+\alpha\left\|s_{k}\right\|^{2}}$. Here and below x_{0} is the initial guess. Also, observe that the TIGRA-method of Ramlau [12] is of the form (1.2) with $s_{k}=-\left[F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y^{\delta}\right)+\alpha_{k}\left(x_{0}-x_{k}\right)\right]$ and $\alpha_{k}=\beta_{k}$. Note that, in all these methods, one has to compute Fréchet derivative of F at each iterate x_{k} in each iteration step which is in general very expensive.

1.1. Preliminaries

Let $B(x, r), \bar{B}(x, r)$ stand, respectively for the open and closed balls in X, with center $x \in X$ and of radius $r>0$. In [11], Neubauer and Scherzer considered the steepest descent method:

$$
\begin{align*}
x_{k+1} & =x_{k}+\alpha_{k} s_{k}(k=0,1,2, \ldots) \\
s_{k} & =-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y\right) \tag{1.3}\\
\alpha_{k} & =\frac{\left\|s_{k}\right\|^{2}}{\left\|F^{\prime}\left(x_{k}\right) s_{k}\right\|^{2}}
\end{align*}
$$

and the minimal error method:

$$
\begin{align*}
x_{k+1} & =x_{k}+\alpha_{k} s_{k}(k=0,1,2, \ldots) \\
s_{k} & =-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y\right) \tag{1.4}\\
\alpha_{k} & =\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\|s_{k}\right\|^{2}}
\end{align*}
$$

in the noise free case and obtained the rate

$$
\begin{equation*}
\left\|x_{k}-\hat{x}\right\|=O\left(k^{-\frac{1}{2}}\right) \tag{1.5}
\end{equation*}
$$

under the assumptions (\mathcal{A}) :
$\left(\mathcal{A}_{1}\right) F$ has a Lipschitz continuous Fréchet derivative $F^{\prime}($.$) in a neighborhood of x_{0}$.
$\left(\mathcal{A}_{2}\right) F^{\prime}(x)=R_{x} F^{\prime}(\hat{x}), x \in B\left(x_{0}, \rho\right)$ where $\left\{R_{x}: x \in B\left(x_{0}, \rho\right)\right\}$ is a family of bounded linear operators $R_{x}: Y \longrightarrow Y$ with

$$
\left\|R_{x}-I\right\| \leq C\|x-\hat{x}\|
$$

where C is a positive constant and
$\left(\mathcal{A}_{3}\right)$

$$
x_{0}-\hat{x}=\left(F^{\prime}(\hat{x})^{*} F^{\prime}(\hat{x})\right)^{\frac{1}{2}} z
$$

for some $z \in X$.
In the present paper, we consider a modified steepest descent method and a modified minimal error method, in the case of noise free case, defined by

$$
\begin{align*}
x_{k+1} & =x_{k}+\alpha_{k} s_{k} \quad(k=0,1,2, \ldots) \\
s_{k} & =-F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right) \tag{1.6}\\
\alpha_{k} & =\frac{\left\|s_{k}\right\|^{2}}{\left\|F^{\prime}\left(x_{0}\right) s_{k}\right\|^{2}}
\end{align*}
$$

and

$$
\begin{align*}
x_{k+1} & =x_{k}+\alpha_{k} s_{k}(k=0,1,2, \ldots) \\
s_{k} & =-F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right) \tag{1.7}\\
\alpha_{k} & =\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\|s_{k}\right\|^{2}}
\end{align*}
$$

respectively. Instead of assumptions (\mathcal{A}), we use the following assumptions (\mathcal{C}) :
$\left(\mathcal{C}_{0}\right)\left\|F^{\prime}(x)\right\| \leq m$ for some $m>0$ and for all $x \in D(F)$.
$\left(\mathcal{C}_{1}\right) F^{\prime}(\hat{x})=F^{\prime}\left(x_{0}\right) G\left(\hat{x}, x_{0}\right)$ where $G\left(\hat{x}, x_{0}\right)$ is a bounded linear operator from $X \longrightarrow X$ with

$$
\left\|G\left(\hat{x}, x_{0}\right)-I\right\| \leq C_{0} \rho
$$

where C_{0} is a positive constant and $\rho \geq\left\|x_{0}-\hat{x}\right\|$.
$\left(\mathcal{C}_{2}\right) F^{\prime}(x)=R(x, y) F^{\prime}(y)\left(x, y \in B\left(x_{0}, \rho\right)\right)$ where $\left\{R(x, y): x, y \in B\left(x_{0}, \rho\right)\right\}$ is a family of bounded linear operators $R(x, y)$: $Y \longrightarrow Y$ with

$$
\|R(x, y)-I\| \leq C_{1}\|x-y\|
$$

for some positive constant C_{1} and

https://daneshyari.com/en/article/4625501

Download Persian Version:

https://daneshyari.com/article/4625501

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nitksanthosh@gmail.com, sgeorge@nitk.ac.in (S. George), msabarijothi16@gmail.com (M. Sabari).

