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a b s t r a c t 

Galerkin finite element approximation to nonlinear parabolic equation is studied with a 

linearized backward Euler scheme. The error between the exact solution and the numerical 

solution is split into two parts which are called the temporal error and the spatial error 

through building a time-discrete system. On one hand, the temporal error derived skill- 

fully leads to the regularity of the time-discrete system solution. On the other hand, the 

τ -independent spatial error and the boundedness of the numerical solution in L ∞ -norm is 

deduced with the above achievements. At last, the superclose result of order O (h 2 + τ ) in 

H 

1 -norm is obtained without any restriction of τ in a routine way. Here, h is the subdivi- 

sion parameter, and τ , the time step. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Consider the following nonlinear parabolic equation: { 

u t − ∇ · (a (u ) ∇u ) = f (u ) , (X, t) ∈ � × (0 , T ] , 
u = 0 , (X, t) ∈ ∂� × (0 , T ] , 
u (X, 0) = u 0 (X ) , X ∈ �, 

(1.1) 

where � ⊂ R 

2 is an open bounded domain with the boundary ∂�, 0 < T < ∞ and X = (x, y ) , a ( u ), f ( u ), u 0 ( X ) are known 

smooth functions. Assume that a ( u ) is a twicely continuously differentiable with respective to u , 0 < a 0 ≤ a ( u ) ≤ a 1 for 

certain positive constants a 0 , a 1 . In addition, f ( u ) is locally Lipschitz continuous in u . 

For nonlinear parabolic problems, the linearized Galerkin finite element method (FEM) is a preference. For example, 

Thomée [1] constructed linearized scheme for (1.1) and obtained a superclose result of order O (h 2 + τ ) in L 2 -norm for 

conforming linear triangle element. Rachford [2] discussed several linearized variants of a Crank–Nicolson discrete time 

Galerkin procedure, where optimal rate estimates were derived. In [3] , optimal order error estimates in L 2 -norm and H 

1 - 

norm were obtained by using a linearized scheme with a nonlinear H 

1 projection of the exact solution for conforming 

elements. However, in studying the error estimate of a linearized scheme, the boundedness of numerical solution in L ∞ - 

norm or a stronger norm is often required. If a priori estimate for numerical solution in such a norm can’t be obtained, one 

may employ the inverse inequality to deal with this issue, which will result in some time-step restrictions. For instance, 

Rachford [2] and Luskin [3] studied the case τ = O (h q/ 2 )(q ≥ 4) and τ 4 = O (h q )(q ≤ 3) , respectively. Furthermore, for many 

other nonlinear physical systems, the time-dependent optimal error estimates have been extensively investigated, such as 
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nonlinear Sobolev problems [4,5] , nonlinear Schrödinger equations [6,7] and Navier–Stokes equations [8–10] . In order to 

avoid such defect, the so-called splitting technique [11] was used to solve a class of nonlinear parabolic equations and obtain 

the unconditional error estimates, where a corresponding time-discrete system was constructed to split the error into two 

parts, the temporal error and the spatial error. More precisely, the spatial error is τ -independent and the numerical solution 

can be bounded in L ∞ -norm by an inverse inequality unconditionally. Later, Sun et al. [11–17] also applied such idea to 

other equations. However Sun et al. [11–17] only arrived at optimal estimate without referring to the superclose character. 

Recently, Shi et al. [18] discussed the unconditional superclose property for Sobolev equation with conforming mixed FEM, in 

which the authors first derived the estimate ‖ ̄∂ t (U 

i 
h 

− I h u 
i ) ‖ 1 and then employed U 

n 
h 

− I h u 
n = τ

∑ n 
i =1 ∂̄ t (U 

i 
h 

− I h u 
i ) to get the 

final results (the notations appeared herein will be defined below). But this method is difficult to be extended to parabolic 

equation for it relies on the nature of the equation too much. 

Different from Thomée [1] and Shi et al. [18] , the main aim of this paper is to study the unconditional superconvergence 

analysis of u in H 

1 -norm for (1.1) with bilinear conforming FE. Motivated by the idea of splitting technique in [11–17] , we 

introduce a time discrete system with solution of variable U 

n to split the error u n − U 

n 
h 

into the temporal error and the 

spatial error. Firstly, we estimate the temporal error which leads to the regularity of U 

n . Secondly, we get the spatial error, 

τ
∑ n 

i =1 ‖ ̄∂ t U 

n −1 
h 

− ∂̄ t I h U 

n −1 ‖ 2 0 = O (h 2 ) , which plays a key role in getting rid of the constraint of τ . At last, we use different 

strategy to reach the order of O (h 2 + τ ) . It is also worthy to be emphasized that, the requirement of a bounded smooth 

domain � in [11–17] is much stringent than the condition of this work. 

The paper is organized as follows. In Section 2 , a brief description of conforming bilinear FE and an indispensable lemma 

are given. At the same time, a linearized Euler Galerkin FE scheme is established. In Section 3 , a time-discrete system is 

developed and the corresponding temporal errors are obtained. In Section 4 , the unconditional spatial error with order O ( h ) 

and superclose result of u with order O (h 2 + τ ) are derived, respectively. In Section 5 , some numerical results are provided 

to show the validity of the theoretical analysis. 

2. Conforming FE approximation scheme 

Let � be a rectangle in ( x , y ) plane with edges parallel to the coordinate axes, �h be a quasiuniform partition of � into 

rectangular πh . Denote h = max 
πh ∈ �h 

diam πh the mesh size. Let V h be the usual bilinear FE space, V h 0 = { v h ∈ V h , v h | ∂� = 0 } and 

I h : H 

2 ( �) → V h be the associated interpolation operator on V h . Then we have the following lemma which plays an important 

role in achieving the superconvergence later and it can be found in [19] . 

Lemma 1. If u ∈ H 

3 ( �), then for all v h ∈ V h 0 , there holds 

(∇(u − I h u ) , ∇v h ) = O (h 

2 ) ‖ u ‖ 3 ‖∇v h ‖ . (2.1) 

Let { t n : t n = nτ ; 0 ≤ n ≤ N} be a uniform partition of [0, T ] with the time step τ = T /N. We denote σ n = σ (X, t n ) . For a 

sequence of functions { σ n } N 
n =0 

, we remark ∂̄ t σ n = 

σ n −σ n −1 

τ , n = 1 , 2 , . . . , N. With these notations, we develop the linearized 

Galerkin FEM to problem (1.1) : seek U 

n 
h 

∈ V h 0 , such that 

( ̄∂ t U 

n 
h , v h ) + (a (U 

n −1 
h 

) ∇ U 

n 
h , ∇ v h ) = ( f (U 

n −1 
h 

) , v h ) , n = 1 , 2 , . . . , N, ∀ v h ∈ V h 0 , (2.2) 

where U 

0 
h 

= I h u 0 . Obviously, a linear system with certain constant coefficients needs to be solved now. 

3. Error estimates for time-discrete system 

In this section, we introduce the following time-discrete system: { 

∂̄ t U 

n − ∇ · (a (U 

n −1 ) ∇U 

n ) = f (U 

n −1 ) , X ∈ �, n ≥ 1 , 

U 

n = 0 , X ∈ ∂�, n ≥ 1 , 

U 

0 (X ) = u 0 (X ) , X ∈ �. 

(3.1) 

The above system can be viewed as a system of linear elliptic equations, and the existence and uniqueness of solution 

can be proved immediately. In what follows, we set e n = u n − U 

n (n = 0 , 1 , 2 , . . . , N) , analyze ‖ u n − U 

n ‖ i (i = 0 , 1 , 2) and give 

the regularity result of U 

n . 

Theorem 1. Let u and U 

m (m = 0 , 1 , 2 , . . . , N) be the solutions of (1.1) and (3.1) , respectively, u ∈ L 2 (0, T ; H 

3 ( �)), u t ∈ L ∞ (0, T ; 

H 

2 ( �)), u tt ∈ L 2 (0, T ; L 2 ( �)), then for m = 1 , . . . , N, there exists τ 0 such that when τ < τ 0 , we have 

1 √ 

τ
‖∇e 1 ‖ 0 + ‖ e 1 ‖ 2 + ‖∇e m ‖ 0 + 

( 

τ
m ∑ 

i =2 

‖ e i ‖ 

2 

2 

) 

1 
2 

+ τ
1 
2 ‖ e m ‖ 2 ≤ C 0 τ, (3.2) 

and 
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