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a b s t r a c t 

In approximation theory, the Lebesgue constant of an interpolation operator plays an im- 

portant role. The Lebesgue constant of Berrut’s interpolation operator has been extensive 

studied. In the present work, by introducing a new method, we obtain an optimal asymp- 

totic Lebesgue constant of Berrut’s rational interpolant at equidistant nodes. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Berrut’s rational interpolant [1–4] to approximate a function f : [ a, b] → R at the n + 1 distinct interpolation nodes 

a = x 0 < x 1 < · · · < x n = b 

is defined by 

r n ( f, x ) = 

n ∑ 

i =0 

f (x i ) b i (x ) , 

where 

b i (x ) = 

(−1) i 

x − x i 
/ 

n ∑ 

j=0 

( −1) j 

x − x j 
. 

The Lebesgue constant [5–7,10] of this interpolation operator is 

�n = max 
a ≤x ≤b 

n ∑ 

i =0 

| b i (x ) | . 

In approximation theory, the Lebesgue constant of interpolation operators plays an important role. Corresponding results 

abound in the literature [8,9,11–15] . The more interesting bound is the upper one, since, when small, it guarantees the well- 

conditioning of the interpolation process. For equidistant nodes, Bos et al. [5] have obtained the following upper and lower 

bounds of the Lebesgue constant: 

2 n 

4 + nπ
ln (n + 1) ≤ �n ≤ 2 + ln (n ) . (1) 
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In the recent work [16] , the following tighter upper bound has been obtained: 

�n ≤ 1 

1 + 

π2 

24 

ln (n + 1) + 1 , n ≥ 174 . (2) 

However the factor 1 

1+ π2 

24 

in the leading term ln (n + 1) is not optimal. Based on some numerical experiments [5,16] , a 

few researchers have guessed that the optimal factor could be 2 
π . In this paper, by introducing a new idea, we prove this 

conjecture. The main result is as follows: 

�n ≤ 2 

π
ln (n + 2) + 2 . 9468 , n ≥ 46 . (3) 

Combining (3) with (1) , one can readily see that 

lim 

n →∞ 

�n 

ln n 

= 

2 

π
. 

Thus, the factor 2 
π in (3) can not be replaced by a smaller one when n is sufficiently large. This shows the validity of 

the conjecture. The constant term 2.9468 in the inequality (3) is not optimal. It seems a more difficult problem to find 

the optimal one. Finally, we should point out a recent result given by Ibrahimoglu and Cuyt [17] . They obtained a “precise 

growth formula”

2 ( ln (n + 1) + ln 2 + γ ) 

π + 

4 
n +3 

≤ �n � 

2 

(
ln (n + 1) + ln 2 + γ + 

1 
24 n 

)
π − 4 

n +2 

, 

where γ = 0 . 5772 . . . is the Euler–Mascheroni constant. However, their result does not stand on firm ground since their 

work depends on computer observations; they did prove an upper bound only for the Lebesgue function in the center of 

every interval between two nodes, not for �n . 

2. The result and its proof 

2.1. Some elementary inequalities 

To obtain the result (3) , we need some elementary expressions. Let 

αn (x ) := ln (n − 1 

2 

− x ) + ln (x + 

3 

2 

) . (4) 

αn ( x ) is an increasing function on the interval x ∈ [1 , n 2 − 1] ( n ≥ 10), which yields for an integer k 

2 < αn (k ) ≤ 2 ln (n + 1) − 2 ln 2 , 1 ≤ k ≤ n 

2 

− 1 . (5) 

For simplicity, we introduce the function 

s n (t) := 

n ∑ 

i =1 

(
(−1) i 

t − 2 i 
+ 

(−1) i 

t + 2 i 

)
, (6) 

which can be modified to 

s n (t) = 

n ∑ 

i =1 

(−1) i +1 

2 i 

(
1 

1 − t 
2 i 

− 1 

1 + 

t 
2 i 

)
= 

n ∑ 

i =1 

(−1) i +1 

i 

(
t 

2 i 
+ 

(
t 

2 i 

)3 

+ · · ·
)

= 

∞ ∑ 

m =1 

a m 

t 2 m −1 , 

where a m 

:= 

n ∑ 

i =1 

(−1) i +1 

i 2 m 

(
1 
2 

)2 m −1 
> 0 . It is easy to see from the above expression that 

s (k ) 
n (t) ≥ 0 , k = 0 , 1 , 2 , . . . . t ∈ R . (7) 

Thus, s (k ) 
n (t) is an increasing function on t ∈ [0, 1] for a fixed k . From (6) , it is not difficult to obtain 

s n 

(
2 

3 

)
= 

(
3 

4 

− 3 

8 

− 3 

10 

+ 

3 

14 

)
+ 

(
3 

16 

− 3 

20 

− 3 

22 

+ 

3 

26 

)
+ · · · > 

2 

7 

, (8) 

s ′ n 
(

2 

3 

)
> 

(
9 

16 

+ 

9 

64 

− 9 

100 

− 9 

196 

)
+ 

(
9 

256 

+ 

9 

400 

− 9 

484 

− 9 

676 

)
+ · · · > 

9 

16 

, (9) 

and 

s ′ n (1) = 1 + (−1) n +1 1 

(2 n + 1) 2 
≤ 1 + 

1 

(2 n + 1) 2 
. (10) 
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