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a b s t r a c t 

A cactus is a connected graph in which any two cycles have at most one common vertex. 

The distance spectral radius ρ( G ) of a graph G is the largest eigenvalue of the distance 

matrix D ( G ). Recently, many researchers proposed the use of ρ( G ) as a molecular struc- 

ture descriptor of alkanes. In this paper, we characterize n -vertex cyclic cactus with given 

matching number m which minimizes the distance spectral radius. The resulting cactus 

also minimizes the Hosoya index, the Wiener index and the Randi ́c index in the same 

class of graphs. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

We only consider connected, simple and undirected graphs. Let G = (V G , E G ) be a simple graph on n vertices. We follow 

the notation and terminologies in [5,9] except otherwise stated. 

Let d G (v ) denote the degree of a vertex v in G and N G (v ) be the set of vertices adjacent to v in G . A vertex v is called 

a pendant vertex of G if d G (v ) = 1 and the edge associated with a pendant vertex is called a pendant edge. Denote by | U | 

the cardinality of the set U . For a vertex subset S of V G , write G [ S ], the subgraph induced by S . Let G − v , G − u v denote the 

graph obtained from G by deleting the vertex v ∈ V G , or the edge u v ∈ E G , respectively (this notation is naturally extended if 

more than one vertex or edge is deleted). Similarly, G + u v is obtained from G by adding an edge u v �∈ E G . For a connected 

graph G , an edge u v in E G is called a cut edge if G − u v is disconnected. Denote by P n , S n and K n the path, the star and the 

complete graph with n vertices, respectively. 

Two distinct edges in a graph G are independent if they do not have a common end vertex in G . A set of pairwise 

independent edges of G is called a matching of G , while a matching of maximum cardinality is a maximum matching of G . 

The matching number m of G is the cardinality of a maximum matching of G . Let M be a matching of G . The vertex v in G 

is M - saturated if v is incident with an edge in M , we also say that M saturates v ; otherwise, v is M - unsaturated . A perfect 

matching M of G means that each vertex of G is M -saturated. Clearly, every perfect matching is maximum. 

The distance between two vertices u, v ∈ V G is denoted by d u v and is defined as the length of a shortest path between u 

and v in G . The distance matrix of G is denoted by D ( G ) and is defined by D (G ) = (d u v ) u, v ∈ V G . It is easy to see that the matrix 

D ( G ) is real symmetric, so all its eigenvalues are real [9] . The distance spectral radius ρ( G ) of G is the largest eigenvalue of the 

distance matrix D ( G ). If in addition G is connected, D ( G ) is non-negative and irreducible. By the Perron–Frobenius theory of 
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non-negative matrices, ρ( G ) has multiplicity one and there exists a unique positive unit eigenvector, say x = (x 1 , x 2 , . . . , x n ) 
T , 

corresponding to ρ( G ). We refer to x = (x 1 , x 2 , . . . , x n ) 
T as the distance Perron vector of G . Obviously, 0 < x i < 1 for 1 ≤ i ≤

n . It will be convenient to associate a labeling of vertices of G (with respect to x ) in which x v is the label of v . The distance 

characteristic polynomial of G , equal to det (xI − D ) , is denoted by P ( G , x ) (or, for short, by P ( G )). Also, the quadratic form 

x T D ( G ) x can be written as 

ρ(G ) = x 

T D (G ) x = 2 

∑ 

{ u, v }⊆V G 

d u v x u x v . 

The eigenvector equation D (G ) x = ρ(G ) x can be interpreted as 

ρ(G ) x v = 

∑ 

u ∈ V G 
d u v x u (1.1) 

Balaban et al. [2] proposed the use of ρ( G ) as a molecular descriptor, while in [13] it was successfully used to infer the 

extent of branching and model boiling points of alkanes. In recent years, the distance spectral radius has received much 

attention; see [1,3,4,7,15,18,19,21,24,26,30,31,33–36] . In particular, Ili ́c [15] characterized n -vertex trees with given match- 

ing number, which minimizes the distance spectral radius. Liu [19] characterized graphs with minimal distance spectral 

radius in three classes of simple connected graphs on n vertices: with fixed vertex connectivity, matching number and chro- 

matic number, respectively. Zhang [35] and Lu and Luo [21] characterized unicyclic graphs with perfect matching and given 

matching number, respectively, which minimize the distance spectral radius. It is natural and interesting to consider the 

same problem in the class of cactus graphs, each of which is a connected graph in which any two cycles have at most one 

common vertex. Cacti have been an interesting topic in chemical and mathematical literature; see [6,8,12,14,16,17,22,23,27] . 

For a cactus G , we call it a bundle if all cycles of G have exactly one common vertex. A cactus G is called a cyclic cactus 

if G contains at least one cycle. Since Ili ́c in [15] characterized n -vertex trees with given matching number, we only consider 

cyclic cacti in this paper. Denote by C 

m 

n the set of all cyclic cacti on n vertices with matching number m . In this paper, we 

determine the distance spectral radius of graphs among C 

m 

n . The corresponding extremal graphs are identified. 

2. Preliminaries 

Recall that the spectral radius of a non-negative irreducible matrix increases when an entry increases [25, p. 38] . Thus, 

we have the following lemma. 

Lemma 2.1 [28] . Let G be a connected graph with two nonadjacent vertices u, v ∈ V G . Then ρ(G + u v ) < ρ(G ) . 

A chain in a graph G is a cycle C in G , such that G − E C has exactly | V C | components. A generalized closed necklace is a 

graph with a chain. The length of the chain is just the length of the cycle C . 

Let G be consisted of a connected subgraph H and pendant graphs G 

i (1 ≤ i ≤ k ) of order t i , where V G i ∩ V H = { v i } . 
Vertex v i is called the root of the graph G 

i on H . If t i ≥ 2, then G 

i is called a nontrivial attaching graph to H with root v i . If 
V G i = { v i } , then G 

i is called a trivial attaching graph to H . If in addition G 

i is a subtree of G , then G 

i is called a pendant tree 

to H of G . 

From [8] , we get the following useful lemmas. 

Lemma 2.2 [8] . Let G be a generalized closed necklace with a chain of odd length l where l ≥ 5 . If G 

′ is the graph obtained from 

G by identifying three consecutive vertices on that chain, one of which has degree at least three, and creating two new pendant 

vertices at the identified vertex, then ρ( G 

′ ) < ρ( G ) . 

Lemma 2.3 [8] . Let G be a generalized closed necklace with a chain of even length. If G 

′ is the graph obtained from G by 

identifying two adjacent vertices on that chain, one of which has degree at least three, and creating a new pendant vertex at the 

identified vertex, then ρ( G 

′ ) < ρ( G ) . 

Lemma 2.4 [8] . Let G be a graph with a clique K s satisfying that G − E K s has exactly s components. Let G 

1 and G 

2 be two 

nontrivial components of G − E K s such that u ∈ V K s ∩ V G 1 and v ∈ V K s ∩ V G 2 . If G 

′ = G − ∑ 

w ∈ N 
G 2 

(v ) v w + 

∑ 

w ∈ N 
G 2 

(v ) uw, then ρ( G 

′ ) 
< ρ( G ) . 

Further on we need the following lemmas. 

Lemma 2.5 [10] . Let B be a real symmetric n × n matrix and λ an eigenvalue of B with an eigenvector x all of whose entries 

are nonnegative. If S i ( B ) (1 ≤ i ≤ n ) is the ith row sum of B , then 

min 

1 ≤i ≤n 
S i (B ) � λ � max 

1 ≤i ≤n 
S i (B ) . 

Moreover, if the row sums of B are not all equal and if all entries of x are positive, then both inequalities above are strict. 

Lemma 2.6 [32] . Let G be a connected graph and σ an automorphism of G. If x is the distance Perron vector of G , then σ (u ) = v 
leads to x u = x v . 

Lemma 2.7 [11] . ρ(C n ) = 

n 2 

4 if n is even; ρ(C n ) = 

n 2 −1 
4 if n is odd. 
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