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a b s t r a c t 

In this paper the Hamiltonian approximate analytical approach is extended for solving vi- 

brations of conservative oscillators with the sum of integer and/or non-integer order strong 

nonlinearities. Solution of the nonlinear differential equation is assumed in the form of a 

trigonometric function with unknown frequency. The frequency equation is obtained based 

on the hypothesis that the derivative of the Hamiltonian in amplitude of vibration is zero. 

The accuracy of the approximate solution is treated with two different approaches: com- 

paring the analytical value for period of vibration with the period obtained numerically 

and developing an error estimation method based on the ratio between the averaged resid- 

ual function and the total constant energy of system. The procedures given in the paper 

are applied for two types of examples: an oscillator with a strong nonlinear term and an 

oscillator where the nonlinearity is of polynomial type. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Recently, a significant number of methods developed for weakly nonlinear oscillators (see [1] ) are adopted for solving 

strong nonlinear oscillators, such as: Lindstedt–Poincare method [2] , harmonic balance method ( [3,4] ), homotopy pertur- 

bation method [5,6] , variational iteration method ( [7] ), Hamiltonian approach ( [8,9] ), Krylov–Bogolubov method ( [10,11] ). 

Mickens [12] presented their application on the oscillator with the nonlinearity of certain non-integer order. Further investi- 

gation were directed toward generalization of the model where the nonlinearity has the order, which is any rational number 

(integer or non-integer) ( [13–19] ). 

In this paper an oscillator whose nonlinearity is of polynomial type, with orders which are rational numbers, is consid- 

ered. The model of the oscillator is 

ẍ + f (x ) = 0 , (1) 

with initial conditions 

x (0) = A, ˙ x (0) = 0 , (2) 
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where f ( x ) is the conservative force given by (see [19] ) 

f (x ) = 

p ∑ 

k =1 

c 2 k x | x | αk −1 , (3) 

and c 2 
k 

are positive small or large constants and the order of nonlinearities αk are rational numbers (integers or non- 

integers). To solve the Eq. (1) the Hamiltonian approach developed by He [8] is extended for obtaining an amplitude–

frequency relationship for oscillators with the sum of integer and rational positive power terms. It is necessary to predict 

the accuracy of the analytically obtained approximate solution. It is not an easy task, when the exact closed form solution 

of the problem is not known. For that case, usually, the approximate solution is compared with a numerically obtained one. 

Using the Runge–Kutta procedure the numerical solution of (1) for certain initial conditions (3) is calculated. The obtained 

numerical solution and the approximate solutions are compared and their difference is located in certain values of time. 

It would be of interest to predict the error of the approximate solution without knowledge of the exact solution of the 

oscillator, independently of the time. The average error between the approximate and the exact solution has to be deter- 

mined. There are many error estimating procedures based on the value of the mean square residual [20,21] . Atanackovic 

and Achenbach [21] proposed an error estimation method for some vibration problems. Recently, Farzaneh and Tootoonchi 

[22] introduced the method for minimization of the error for the frequency of the Duffing oscillator. Thereafter, Akbarzade 

and Langari [23] and Yazdi and Tehrani [24] successfully applied the technique to several nonlinear problems. 

In this paper a comprehensive method for error estimation, which does not depend on the exact solution, is introduced. 

The method is based on averaging of the residual function of the conservative oscillator. The error is estimated as the inte- 

gral of the square of the difference between the calculated and total energy of the oscillator, i.e., corresponding Hamiltonians, 

over the period of vibration. The error is a function of initial amplitude of vibration, coefficients and orders of nonlinearity. 

The relative error is the rate between the square root of the calculated integral and the initial energy of the oscillator. In 

the paper two examples are treated: an oscillator with a strong nonlinear term and an oscillator where the nonlinearity is 

of polynomial type. The accuracy of the approximate solution is tested applying the suggested procedure. 

2. The approximate solution 

Eqs. (1) with (3) describes a conservative oscillator with kinetic energy 

K = 

˙ x 2 

2 

, (4) 

and potential energy 

F (x ) = 

p ∑ 

k =1 

c 2 
k 

αk + 1 

| x | αk +1 . (5) 

The total energy of the oscillator corresponds to its Hamiltonian 

H = 

1 

2 

˙ x 2 + F (x ) = 

1 

2 

˙ x 2 + 

p ∑ 

k =1 

c 2 
k 

αk + 1 

| x | αk +1 . (6) 

For the conservative oscillator the total energy keeps unchanged during the oscillation. It implies that the Hamiltonian is 

constant, i.e., H = H 0 = const., and 

1 

2 

˙ x 2 + 

p ∑ 

k =1 

c 2 
k 

αk + 1 

| x | αk +1 − H 0 = 0 , (7) 

where due to initial conditions (2) 

H 0 = 

p ∑ 

k =1 

c 2 
k 

αk + 1 

A 

αk +1 . (8) 

Very often it is impossible to obtain the closed form analytic solution of (7) . Trial solution is assumed in the form 

x (t) = A cos (ωt) , (9) 

where ω is the unknown frequency of vibration and A is the amplitude of the oscillator. Substituting (9) into (6) , we have 

˜ H = 

1 

2 

A 

2 ω 

2 sin 

2 (ωt) + 

p ∑ 

k =1 

c 2 
k 

αk + 1 

A 

αk +1 
[ √ 

cos 2 (ωt) 
] αk +1 

. (10) 

Usually, the frequency ω is determined from the derivative of Eq. (7) 

∂ ˜ H 

∂A 

= 0 . (11) 
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