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a b s t r a c t 

In this paper, we apply the Boole discrete line integral to solve the Lorentz force system 

which is written as a non-canonical Hamiltonian system. The method is exactly energy- 

conserving for polynomial Hamiltonians of degree ν ≤ 4. In any other case, the energy can 

also be conserved approximatively. With comparison to well-used Boris method, numerical 

experiments are presented to demonstrate the energy-preserving property of the method. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

With the fast development of computer, geometric methods become more and more powerful in scientific research. A 

numerical method is called geometric method if it can conserve the geometric properties of a system up to round-off error 

[1–4] . Geometric methods, such as symplectic methods, symmetric methods, volume-preserving methods, energy-preserving 

methods and so on, have been successfully used in many application areas [5–10] . 

Many important phenomena in plasmas can be understood and analyzed in terms of the single-particle motion which 

satisfies the Lorentz force equations [11] . The motion of charged particles in single particle model is governed by the Newton 

equation under the Lorentz force exerted by a given electromagnetic field. Hamiltonian formulation is available for the single 

particle model and other magnetized plasma models in special coordinates [12,13] . In long-term simulating the motion of 

charged particles, non-geometric methods such as the standard 4th order Runge–Kutta method may give rise to a complete 

wrong solution orbit, since the numerical errors of each time step will add up coherently and become significantly large 

over many time steps. In contrast, geometric methods show a good long-term accuracy, for instance, the volume-preserving 

algorithms [14,15] , the Boris method which can also conserve phase space volume [16–19] , the variational symplectic method 

[20–22] and so on. It is well-know that the most noticeable structure of a Hamiltonian system is the Hamiltonian function 

itself which is usually the energy of the system. The paper is devoted to constructing an energy-preserving method for the 

Lorenz force system. 

The conservation of the energy function is one of the most relevant features characterizing a Hamiltonian system. Meth- 

ods that exactly preserve energy have been considered since several decades. Many energy-preserving methods have been 

proposed [23–26] . The discrete gradient method is among the most popular methods for designing integral preserving 

schemes for ordinary differential equations, which was perhaps first discussed by Gonzalez [23] . Matsuo proposed a dis- 

crete variational method for nonlinear wave equation [24] . The averaged vector field method which is a B-series method 
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has been proposed [25,26] . More recently, Brugnano and Iavernaro proposed the discrete line integral (DLI) methods [27,28] , 

the Hamiltonian boundary value methods [29,30] and the line integral methods [31–33] . The key idea of the DLI methods is 

to exploit the relation between the method itself and the discrete line integral, i.e., the discrete counterpart of the line inte- 

gral in conservative vector fields. This tool yields exact conservation for polynomial Hamiltonians of arbitrarily high-degree. 

Different quadrature formulas yield different DLI methods. Especially, if we choose Boole’s rule which is the Newton–Cotes 

formula of degree 4, the so-called Boole discrete line integral (BDLI) method which is exactly energy-conserving for a poly- 

nomial Hamiltonian of degree ν ≤ 4 is obtained. 

In this paper, the Lorentz force system is written as a non-canonical Hamiltonian form. We apply the BDLI method for 

the Hamiltonian system, and a new energy-preserving method is obtained. The new method is symmetric and can preserve 

the Hamiltonian up to round-off error. 

The paper is organized as follows: In Section 2 , the dynamics of charged particles in the electromagnetic field is shown 

and it is written as a non-canonical Hamiltonian system. In Section 3 , we use the BDLI method to solve the Hamiltonian 

system. Based on Boole’s rule, a new method for Lorentz force system is obtained. Numerical experiments are presented in 

Section 4 to confirm the theoretical results and the compare the efficiency of the new formula with the well-known Boris 

method [16] . We finish the paper with conclusions in Section 5 . 

2. Hamiltonian form of the Lorentz force system 

In this section, we review the Hamiltonian form of the Lorentz force system [12–14] . For a charged particle in the elec- 

tromagnetic field, its dynamics is governed by the Newton–Lorentz equation 

m ̈x = q ( E + 

˙ x × B ) , x ∈ R 

3 , (2.1) 

where x is the position of the charged particle, m is the mass, and q denotes the electric charge. For convenience, here we 

assume that B and E are static, thus B = ∇ × A and E = −∇ϕ with A and ϕ the potentials. 

Let the conjugate momentum be p = m ̇

 x + q A ( x ) , then the system (2.1) is Hamiltonian with 

H( x , p ) = 

1 

2 m 

( p − q A ( x )) · ( p − q A ( x )) + qϕ( x ) . (2.2) 

Exploiting the transformation G : ( x , p ) −→ ( x , v ) , x = x , v = p /m − q A ( x ) /m, system (2.1) is recast as 

˙ x = v , (2.3) 

˙ v = 

q 

m 

( E ( x ) + v × B ( x )) . (2.4) 

Denote z = [ x T , v T ] T . (2.3) and (2.4) can be written as the non-canonical Hamiltonian system 

˙ z = f ( z ) = K( z ) ∇H( z ) , (2.5) 

where H( z ) = m v · v / 2 + qϕ( x ) , and 

K( z ) = 

(
0 

1 
m 

I 

− 1 
m 

I q 
m 

2 ̂
 B ( x ) 

)
is a skew-symmetric matrix with 

ˆ B ( x ) = 

( 

0 B 3 ( x ) −B 2 ( x ) 
−B 3 ( x ) 0 B 1 ( x ) 
B 2 ( x ) −B 1 ( x ) 0 

) 

, 

defined by B ( x ) = [ B 1 ( x ) , B 2 ( x ) , B 3 ( x )] T . 

3. Boole discrete line integral method 

It is well know that the flow of the system (2.5) preserves the energy which is usually the Hamiltonian H( z ) exactly. 

In this section, we derive a new energy-preserving scheme for the system (2.5) by using the BDLI method proposed in 

[27,28,33] . Starting from the initial condition z 0 we want to produce a new approximation at t = h, say z 1 , such that the 

Hamiltonian is conserved. By considering the simplest possible path joining z 0 and z 1 , i.e., the segment 

σ (ch ) = c z 1 + (1 − c) z 0 , c ∈ [0 , 1] , (3.1) 

we obtain that 

1 

h 

(H( z 1 ) − H( z 0 )) = 

1 

h 

(H(σ (h )) − H(σ (0))) 

= 

1 

h 

∫ h 

0 

∇H(σ (t)) T σ ′ (t) dt 
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