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The paper is concerned with the hedging of credit derivatives, in particular synthetic 

collateralized debt obligations (CDOs) tranches and first to default swap (FTD) with respect 

to actually traded credit default swaps index (CDS index). In the model, we will relax the 

name homogeneity assumption, that all the names share the same risk-neutral default. 

We think of two homogeneous groups of names and the default intensities of each group 

depending both upon the number of survived names in each subgroup. This results a two 

dimensional Markov chain setting, since the portfolio state is characterized by the number 

of survived names in each group. Finally, we have achieved the numerical implementation 

through trinomial trees, by means of Markov chain techniques. The experimental results 

show that the new extended hedge model in this paper improves the hedge strategies 

under the name homogeneity case. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Recent years have witnessed a surge in demand for credit derivatives, especially with the portfolio credit products like 

basket default swap (BDS), collateralized debt obligations (CDOs) and index tranches. With exceedingly active market for 

these portfolio products, a great number of improved models on pricing these portfolios have been published. Among these, 

factor copula models such as David Li [1] , Laurent and Gregory [2] , and contagion models such as Jarrow and Yu [3] , Yu 

[4] , have a significant impact on the pricing of portfolio credit derivatives. Models begin to provide attention to the hedg- 

ing issues for CDOs after the market has established the pricing standard, especially during the recent sub-prime mortgage 

crisis since 2007. Financial institutions trading the credit products such as banks, mutual funds need to hedge increasingly 

risk in order to lower the uncertainty returns from these products. On the other hand, although the values of highly liquid 

products are determined by supply and demand, a greater cause for developing the pricing models of these products is that 

more and more investors need to hedge and arbitrating. That is why hedging of credit derivatives occupies the important 

position in the studying of credit derivatives. Some scholars such as Cousin and Laurent [5] believed that the next big chal- 

lenge will aim at developing the models that connect pricing and hedging. Nevertheless, only very few models that consider 

� Supported by National Natural Science Foundation of China (nos. 11571310 and 61473332). 
∗ Corresponding author. 

E-mail address: liu_wenqiong6510@126.com (L. Wenqiong). 

http://dx.doi.org/10.1016/j.amc.2016.06.049 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.06.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.06.049&domain=pdf
mailto:liu_wenqiong6510@126.com
http://dx.doi.org/10.1016/j.amc.2016.06.049


280 L. Wenqiong, S. Li / Applied Mathematics and Computation 291 (2016) 279–291 

hedging of portfolio credit products exist. Bielecki and Jeanblance [6] establish a representation theorem to derive the hedg- 

ing portfolio of defaultable contingent claims in a complete market setting and detail the procedure of hedging of FTD with 

credit default swap (CDS). Frey and Backhaus [7] focus on pricing and hedging of portfolio credit products such as BDS and 

CDOs in the reduced models with interacting default intensities. The hedging instrument is neither CDS nor CDS index. They 

choose the set of hedging instruments consists of defaultable zero-coupon bonds issued by some firms in the portfolio and 

the savings account and solve the self-financing portfolio strategy from a linear system which derived from the theorem of 

representation of the martingale. However, switching to another hedging instrument such as CDS, could be dealt with more 

complex and the linear system will become tanglesome form. The hedging of portfolio credit derivatives is also discussed 

in Frey and Backhaus [8] , Rutkowski and Yousiph [9] , Scalliet and Jeanblance [10] , and Laurent and Cousin [11] The major 

contribution of our paper is based on the research [11] . In their framework, hedging default risks of CDO tranches with CDS 

index is the core of their paper. The model assumes all the names share the same risk-neutral default intensity and default 

intensity of each credit name depends only upon the number of defaults within the pool of assets, and then calculate the 

hedging strategies through building up a tree. Eventually, a CDO tranche can be perfectly replicated by dynamically trading 

the CDS index and risk-free asset under the homogeneity of names environment. In this paper, we make an attempt to 

relax the homogeneity of names assumption and assume that the pool of assets can be divided into two different groups. 

Each group might correspond to names with identical credit rating or to names from the same industrial sector. The de- 

fault intensities of names from the same group are identical and depend both on the number of defaults in each subgroup, 

which leads to a two dimensional Markov chain setting. The calibration methods of loss intensities is provided under the 

non-homogeneous case. We have achieved numerical implementation through a trinomial tree. Finally, we have established 

the hedging strategies of a CDO tranche with respect to two CDS index with different maturity. 

The remaining sections are organized as follows. Section 2 gives the description of the background of the model and 

derives the formula of hedging strategies when relaxing the homogeneity assumption. The practical implementations of 

actual hedging strategies of BDS, such as FTD, and CDO tranches through a trinomial tree have been achieved in next section. 

Section 4 provides the calibration methods of loss intensities. Some numerical experiments are organized in the Section 5 . 

Further researches and some conclusions are put in the last section. 

2. Hedging strategies in non-homogeneous case 

2.1. Notation 

In the section and in the sequel, we work under the risk -neutral probability Q . We consider a portfolio of n 

credit references and suppose that the pool of assets can be split into two homogeneous groups with exchange- 

able risk. The group one includes M 1 equally weighted CDS issuers and M 2 for the group two, where M 1 + M 2 = n . 

We denote by τ 1 
i 
, i = 1 , . . . , M 1 , τ 2 

i 
, i = 1 , . . . , M 2 the default times defined on the probability space (�, F , Q ) . Let 

N 

1 i 
t = I τ1 

i 
≤t 

, i = 1 , . . . , M 1 and N 

2 i 
t = I τ2 

i 
≤t 

, i = 1 , . . . , M 2 be the default indicator processes associated of the two groups. 

Let us recall that the processes N 

1 i 
t , i = 1 , . . . , M 1 are adapted to the global filtration H 

1 = (H 

1 
t , t ≥ 0) where H 

1 
t = 
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i =1 
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1 i 
t 

and H 

1 i 
t = σ (N 

1 i 
s , s ≤ t) . Similarly, the processes N 

2 i 
t , i = 1 , . . . , M 2 are adapted to the global filtration H 

2 = (H 
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t , t ≥ 0) 

where H 
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2 i 
t and H 

2 i 
t = σ (N 

2 i 
s , s ≤ t) . The filtration H is defined by H 

1 ∨ H 

2 . Let us denote by N 

1 
t = 

M 1 ∑ 

i =1 

N 

1 i 
t and 

N 

2 
t = 

M 2 ∑ 

i =1 
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2 i 
t the number of defaults at time t in the entire portfolio respectively in the two groups. In the contagion 

approach, one starts from a specification of the risk-neutral predefault intensities ˜ α1 , . . . , ˜ αn . In this paper, the individual 

predefault intensities only depend upon the number of defaults in each subgroups. Predefault intensities thus take the 

form ˜ α1 i 
t = ˜ α1 (t, N 

1 
t , N 

2 
t ) , i = 1 , . . . , M 1 , ˜ α2 i 

t = ˜ α2 (t, N 

1 
t , N 

2 
t ) , i = 1 , . . . , M 2 . For convenience, we assume the recovery rates 

of the two groups as the constants R 1 , R 2 . We denote x 1 by the nominal amount for all the names of the group one 

and x 2 for the group two and they should satisfy the condition M 1 x 1 + M 2 x 2 = 1 . The aggregate fractional loss of the 

i th group at time t is given by L i t = x i (1 − R i ) 
N i t 

M i x i 
, i = 1 , 2 . As the no simultaneous defaults assumption, and since we 

are working in the same filtration [5] , the intensity of L i t or of N 

i 
t is simply the sum of the individual default intensi- 

ties. Let us denote by λi (t, N 

1 
t , N 

2 
t ) the risk -neutral loss intensity. It is related to the individual predefault intensities 

by: 

λi (t, N 

1 
t , N 

2 
t ) = (M i − N 

i 
t ) ̃  αi (t, N 

1 
t , N 

2 
t ) , i = 1 , 2 . (1) 

In a Markovian contagion model, the process is more precisely a two dimensional pure birth process since only single 

default can occur. In fact, the two dimensional process (N 

1 
t , N 

2 
t ) can be proved to be a continuous time Markov chain on the 

state space { 0 , . . . , M 1 } × { 0 , . . . , M 2 } with loss intensity as in (1) . 

The generator of the chain �( t ) is as follows: 
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