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a b s t r a c t 

The vectorial capacity of a mosquito species that is a disease-vector indicates the expected 

number of infectious bites given by all mosquitoes infected from biting a single infected 

human individual, assuming perfect transmissions between humans and vectors. Assess- 

ing this number for different transmitting species of the same disease, such as dengue or 

malaria, expresses how capable these species are of spreading the disease. We describe 

the vectorial capacity as a random process and present a model for analyzing its probabil- 

ity distribution. Our stochastic model permits us to obtain the moment-generating func- 

tion for the distribution of the vectorial capacity and, under reasonable assumptions, the 

probability distribution itself. A stochastic modeling framework is helpful for analyzing the 

dynamics of disease spreading, such as when performing sensitivity analysis. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Seminal works by Ross [1] and MacDonald [2] analyzed the dynamics of malaria transmission under mathematical mod- 

els. These works built a framework for modeling diseases caused by pathogens transmitted by vectors, in particular by 

mosquitoes such as several species of Anopheles (malaria vectors), as well as Aedes mosquitoes (dengue vectors). Garrett- 

Jones [3–5] proposed the concept of vectorial capacity (Garrett-Jones’ vectorial capacity): the number of infectious inocula- 

tions by a given vector to humans, per unit of time, that arise from an index case, assuming perfect transmission between 

humans and vectors. 

Such modeling framework has been applied not only for comparing malaria vectors, but also for comparing vectors of 

other diseases such as dengue, already well-known for regularly causing epidemics throughout the world, and also emerging 

infections, such as Chikungunya. For different species of vectors of a disease, their vectorial capacities indicate how capable 

the species are of transmitting the disease. Conversely, they can also be used to evaluate strategies for controlling the dis- 

ease spreading. In the case of malaria, multiple Anopheles species transmit the malaria parasite (also multiple Plasmodium 

species). The vectorial capacity permits us to compare their respective rates of transmitting the infection in purely entomo- 

logical parameters. Also, different populations of the same species can be compared using this metric, for instance if using 

strategies such as transgenic mosquitoes versus wild ones. 

In order to estimate the expected number of infectious bites, epidemiologists and entomologists measure several param- 

eters that describe the vector’s biological behavior and also the interaction between the vector and both pathogens and 

humans. Let the density of vectors in a given area be m (vectors per humans). Mosquitoes transmit (or receive) pathogens 
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to (from) humans when having human-blood meals for which they need to bite human individuals. For the mosquito to 

become infectious, i.e., being able to infect humans, the viremia levels need to be sufficient at their salivary glands. The 

necessary parameters are the biting rate λ (bites per time unit), mortality rate g , and the time v required by pathogens for 

a vector to become infectious, i.e., to enter a disease-transmitting state. Garrett-Jones vectorial capacity C is 1 : 

C = 

mλ2 e −gv 

g 
. (1) 

The vectorial capacity differs from the basic reproduction number R 0 , which quantifies the disease transmission dynam- 

ics from humans to humans, therefore considering transmission from human to vector, and from vector to other humans 

(incorporating for instance the vectorial competence), and the recovery rate as well. By considering the recovery rate, the 

basic reproduction number R 0 also determines whether an epidemic might occur by the condition R 0 > 1. Aron and May 

[26] derived the reproduction number as R 0 = 

mbλ2 e −gv 
gr , where b gives the vectorial competence and the recovery rate is 

given by r . Clearly, the vectorial capacity is an important factor in deriving R 0 . 

As helpful as an expected number, the vectorial capacity metric has been reviewed using deterministic models in sev- 

eral works. Anderson and May in [6] provided a comprehensive literature review of this modeling framework. Smith and 

McKenzie [7] revisited the formulae involved in the statics and the dynamics of malaria infections. Smith et al. [8] described 

the history behind the contributions of Ross and MacDonald. Massad and Coutinho [9] derived a formulation to explain the 

dimensionless property of the number. As deterministic analyzes, these works focus on the mean value formula presented 

by Garrett-Jones. 

The average-based vectorial capacity has been used and even extended using deterministic approaches and considering 

other factors that impact one or various of its parameters. For instance, Jansen et al. [10] used the concept to evaluate 

risks by different Aedes species of introducing chikungunya in Australia. Novoseltsev et al. [11] derive the vectorial capacity 

assuming age-structured population model. Liu et al. [12] propose estimations of temperature-dependent vectorial capacity. 

Bailey [13,14] analyzed epidemics using stochastic models, including using moment-generating functions, which provided 

a seminal body of work in its own right. Also, for a general epidemic process, Ball and Donnelly [15] present approximations 

results, using moment-generating functions. 

Nevertheless, the treatment presented here using moment-generating functions to describe the vectorial capacity has 

not appeared elsewhere, to the best of our knowledge, and can be quite important to advance the study of the vectorial 

capacity. We demonstrate the derivation of the probability distribution and the mean value formula given by Eq. (1) as an 

expected number from the vectorial capacity distribution. 

The Methods section contains our model description, assumptions, and the definition of moment-generating functions. In 

the Results section we derive the moment-generating function for the vectorial capacity process. In our results, we demon- 

strate using the moment-generating function the moments of the vectorial capacity process. We also illustrate the probabil- 

ity distribution as a numerical example by considering parameters that describe density, survival, biting rate, and incubation 

period, which were estimated from other works in the literature. We end with discussion about other stochastic models and 

their possibilities. 

2. Models and methods 

2.1. Moment-generating functions 

For any generic random variable X the moment-generating function (MGF) is defined by X ∗(θ ) = E[ e θX ] . 2 Therefore, 

X 

∗(θ ) = 

∫ ∞ 

0 

e θx P (X = x ) dx. (2) 

For discrete distributions, which is the case of the variable that describes the vectorial capacity is convenient to work 

with the z -transform: 

X 

∗(z) = 

∞ ∑ 

k =0 

z k P (X = k ) , z = e θ , if X is discrete . 

Two properties of MGFs are important in our derivations. First, since a MGF is unique for any given probability distri- 

bution, once a MGF is known we can obtain either analytically by an inverse transformation or at least numerically the 

distribution itself. Second, for a sum of random variables, the MGF is the product of the individual MGFs [16] . This property 

frequently helps obtaining the MGF and the probability distribution is then derived from the MGF. 

MGFs, as the name suggests, are also helpful to determine moments. For instance, if applying a derivative of the MGF, 
dX(z) 

dz 
= 

∑ ∞ 

k =1 kz k −1 P (X = k ) , and z = 1 , we find 

∑ ∞ 

k =1 kP (X = k ) = E[ X] . 

1 The original formula in [4] used a as the biting rate. 
2 The Laplace transform is the case when there is a variable replacement from θ to −s, i.e. E[ e −sX ] . 
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