ELSEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the solutions of a system of difference equations with maximum*

Taixiang Sun*, Hongjian Xi

College of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530003, China

ARTICLE INFO

MSC: 39A10 39A11

Keywords:

Max-type system of difference equations Solution

Eventual periodicity

ABSTRACT

In this paper, we study the following max-type system of difference equations

$$\begin{cases} x_n = \max\left\{\frac{1}{x_{n-m}}, \min\left\{1, \frac{A}{y_{n-r}}\right\}\right\}, \\ y_n = \max\left\{\frac{1}{y_{n-m}}, \min\left\{1, \frac{B}{x_{n-t}}\right\}\right\}, \end{cases} n \in \mathbb{N}_0$$

where $A, B \in (0, +\infty)$, $m, r, t \in \{1, 2, ...\}$ with $r \neq m$ and $t \neq m$. We show that every solution of this system with the initial values $x_{-d}, y_{-d}, x_{-d+1}, y_{-d+1}, ..., x_{-1}, y_{-1} \in (0, +\infty)$ is eventually periodic with period 2m, where $d = \max\{m, r, t\}$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been a great interest in studying difference equations and systems which do not stem from differential ones (see, e.g., [1–35]). A class of difference equations that has attracted recent attention is the class of, so called, max-type difference equations (see, e.g., [1,3–7,9–11,13–19,23,31–34]). On the other hand, some concrete classes of nonlinear systems of difference equations have also attracted some recent attention (see, e.g., [2,8,22,25,26,30]). Some of recent papers belong to the both areas (see, e.g., [12,20,21,24,27–29,35]). For example, Stević [20] obtained the general solution for the following max-type system of difference equations

$$\begin{cases}
x_{n+1} = \max\left\{\frac{\alpha}{x_n}, \frac{y_n}{x_n}\right\}, \\
y_{n+1} = \max\left\{\frac{\alpha}{y_n}, \frac{x_n}{y_n}\right\},
\end{cases} \qquad n \in \mathbb{N}_0$$
(1.1)

where $\alpha \in \mathbb{R}_+ \equiv (0, +\infty)$ and the initial values $x_0, y_0 \in [\alpha, +\infty)$ and $y_0/x_0 \ge \max\{\alpha, 1/\alpha\}$.

^{*} Project supported by NNSF of China (11261005, 11461003) and NSF of Guangxi (2014GXNSFBA118003).

^{*} Corresponding author. Tel.: +86 7713233009. E-mail address: stxhql@gxu.edu.cn (T. Sun).

In 2012, Stević [21] studied the following max-type system of difference equations

$$\begin{cases} y_{n}^{(1)} = \max_{1 \leq i \leq m_{1}} \left\{ f_{1i}(y_{n-k_{i,1}^{(1)}}^{(1)}, y_{n-k_{i,2}^{(1)}}^{(2)}, \dots, y_{n-k_{i,l}^{(1)}}^{(1)}, n), y_{n-s}^{(1)} \right\}, \\ y_{n}^{(2)} = \max_{1 \leq i \leq m_{2}} \left\{ f_{2i}(y_{n-k_{i,2}^{(1)}}^{(1)}, y_{n-k_{i,2}^{(2)}}^{(2)}, \dots, y_{n-k_{i,l}^{(l)}}^{(l)}, n), y_{n-s}^{(2)} \right\}, \\ \dots \\ y_{n}^{(l)} = \max_{1 \leq i \leq m_{l}} \left\{ f_{li}(y_{n-k_{i,1}^{(l)}}^{(1)}, y_{n-k_{i,2}^{(l)}}^{(2)}, \dots, y_{n-k_{i,l}^{(l)}}^{(l)}, n), y_{n-s}^{(l)} \right\}, \end{cases}$$

$$(1.2)$$

where $s, l, m_j, k_{i,t}^{(j)} \in \mathbb{N} = \{1, 2, ...\}$ $(j, t \in \{1, 2, ..., l\})$ and $f_{ji} : \mathbb{R}^l_+ \times \mathbb{N}_0 \longrightarrow \mathbb{R}_+$ $(j \in \{1, ..., l\})$ and $i \in \{1, ..., m_j\}$, and showed that every positive solution of (1.2) is eventually periodic with (not necessarily prime) period s if f_{ji} satisfy some conditions.

Moreover, Stević et al. [28] investigated the following max-type system of difference equations

$$\begin{cases} y_{n}^{(1)} = \max_{1 \leq i_{1} \leq m_{1}} \left\{ f_{1i_{1}}(y_{n-k_{i_{1},1}^{(1)}}^{(1)}, y_{n-k_{i_{1},2}^{(1)}}^{(2)}, \dots, y_{n-k_{i_{1},1}^{(1)}}^{(1)}, n), y_{n-t_{1}s}^{(\sigma(1))} \right\}, \\ x_{n}^{(2)} = \max_{1 \leq i_{2} \leq m_{2}} \left\{ f_{2i_{2}}(y_{n-k_{i_{2},1}^{(2)}}^{(1)}, y_{n-k_{i_{2},2}^{(2)}}^{(2)}, \dots, y_{n-k_{i_{2},1}^{(2)}}^{(l)}, n), y_{n-t_{2}s}^{(\sigma(2))} \right\}, \\ \dots \\ y_{n}^{(l)} = \max_{1 \leq i_{l} \leq m_{l}} \left\{ f_{li_{l}}(y_{n-k_{i_{l},1}^{(l)}}^{(1)}, y_{n-k_{i_{l},2}^{(l)}}^{(2)}, \dots, y_{n-k_{i_{l},l}^{(l)}}^{(l)}, n), y_{n-t_{l}s}^{(\sigma(l))} \right\}, \end{cases}$$

$$(1.3)$$

where $s, l, m_j, t_j, k_{i_j,h}^{(j)} \in \mathbb{N}$ $(j, h \in \{1, 2, ..., l\})$, $(\sigma(1), ..., \sigma(l))$ is a permutation of (1, ..., l) and $f_{ji_j} : \mathbb{R}^l_+ \times \mathbb{N}_0 \longrightarrow \mathbb{R}_+$ $(j \in \{1, ..., l\}$ and $i_j \in \{1, ..., m_j\}$). They showed that every positive solution of (1.3) is eventually periodic with period sT for some $T \in \mathbb{N}$ if f_{ji_j} satisfy some conditions.

In 2015, Yazlik et al. [35] studied the following max-type system of difference equations

$$\begin{cases} x_{n+1} = \max\left\{\frac{1}{x_n}, \min\left\{1, \frac{\alpha}{y_n}\right\}\right\}, \\ y_{n+1} = \max\left\{\frac{1}{y_n}, \min\left\{1, \frac{\alpha}{x_n}\right\}\right\}, \end{cases} \qquad n \in \mathbb{N}_0$$

$$(1.4)$$

where $\alpha \in \mathbb{R}_+$ and the initial values $x_0, y_0 \in \mathbb{R}_+$, and obtained in an elegant way the general solution of (1.4). Motivated by aforementioned papers, in this paper, we study solutions of max-type system of difference equations

$$\begin{cases} x_n = \max\left\{\frac{1}{x_{n-m}}, \min\left\{1, \frac{A}{y_{n-r}}\right\}\right\}, \\ y_n = \max\left\{\frac{1}{y_{n-m}}, \min\left\{1, \frac{B}{x_{n-t}}\right\}\right\}, \end{cases}$$
 (1.5)

where $A, B \in \mathbb{R}_+$, $m, r, t \in \mathbb{N}$ with $r \neq m$ and $t \neq m$ and the initial values $x_{-d}, y_{-d}, x_{-d+1}, y_{-d+1}, \dots, x_{-1}, y_{-1} \in \mathbb{R}_+$ with $d = \max\{m, r, t\}$. We will show that every solution of (1.5) is eventually periodic with period 2m.

2. Main results and proofs

In this section, we study the eventual periodicity of solutions of system (1.5). Let $\{(x_n, y_n)\}_{n \ge -d}$ be a solution of (1.5) with the initial values $x_{-d}, y_{-d}, x_{-d+1}, y_{-d+1}, \dots, x_{-1}, y_{-1} \in \mathbb{R}_+$. Write

$$p_n = \min\left\{1, \frac{A}{y_{n-r}}\right\}, \qquad q_n = \min\left\{1, \frac{B}{x_{n-t}}\right\}.$$

Then we have $p_n \le 1$ and $q_n \le 1$ for any $n \in \mathbb{N}_0$. For the sake of easier presentation, we formulate and prove the following lemmas.

Lemma 2.1. The following statements hold.

- (1) $x_n x_{n-m} \ge 1$ (resp. $y_n y_{n-m} \ge 1$) for all $n \in \mathbb{N}_0$.
- (2) $x_n \le \max\{x_{n-2m}, p_n\}$ (resp. $y_n \le \max\{y_{n-2m}, q_n\}$) for all $n \ge d$.
- (3) If $x_n = 1/x_{n-m}$ (resp. $y_n = 1/y_{n-m}$) for some $n \ge d$, then $x_n \le x_{n-2m}$ (resp. $y_n \le y_{n-2m}$). If $x_n = p_n > 1/x_{n-m}$ (resp. $y_n = q_n > 1/y_{n-m}$) for some $n \ge d$, then $x_n > x_{n-2m}$ (resp. $y_n > y_{n-2m}$).

Proof.

(1) Since $x_n \ge 1/x_{n-m}$ (resp. $y_n \ge 1/y_{n-m}$) for all $n \in \mathbb{N}_0$, it follows $x_n x_{n-m} \ge 1$ (resp. $y_n y_{n-m} \ge 1$).

Download English Version:

https://daneshyari.com/en/article/4625627

Download Persian Version:

https://daneshyari.com/article/4625627

<u>Daneshyari.com</u>