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a b s t r a c t 

In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlin- 

ear partial differential equations (PDEs) with traveling wave solutions. The moving mesh 

strategy for one dimensional PDEs is based on the rezoning approach which decouples 

the solution of the PDE from the moving mesh equation. We show that the dG moving 

mesh method is able to resolve sharp wave fronts and wave speeds accurately for the op- 

timal, arc-length and curvature monitor functions. Numerical results reveal the efficiency 

of the proposed moving mesh dG method for solving Burgers’, Burgers’–Fisher and Schlögl 

(Nagumo) equations. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The discontinuous Galerkin (dG) method is one of the most powerful discretization techniques for solving partial dif- 

ferential equations (PDEs) [1,2] , especially for convection dominated problems, exhibiting localized phenomena like sharp 

traveling wave fronts, internal and boundary layers [3,4] . The dG method has been applied for this kind of singularly per- 

turbed linear and nonlinear PDEs extensively using h-adaptive (refinement and coarsening in space), p-adaptive (enrichment 

of the local polynomial degree), hp-adaptive and space-time adaptive methods in the last two decades. Another approach to 

deal with these kind of problems, is the r-method or moving mesh method. In the moving mesh method the grid points are 

relocated in the regions where the solution shows rapid variation, while keeping the number of the nodes fixed. The dG dis- 

cretization is very flexible, since there is no continuity requirement between the inter-element boundaries, which makes it 

suitable as a moving mesh method on irregular meshes. Most of the studies with moving mesh methods are limited to finite 

difference and continuous finite element discretization [5] . There are only few publications dealing with dG moving mesh 

method. They include the interior penalty dG method for preprocessing the solutions of steady state diffusion–convection–

reaction equations [6] , and the local dG moving mesh method for hyperbolic conservation laws [7] . 

In this paper we develop an adaptive dG moving mesh method for one dimensional semi-linear differential equations 

with traveling wave solutions of the form 

u t = εu xx − f (u, u x ) , (x, t) ∈ � × (t 0 , T f ] (1a) 

u (x L , t) = u L , u (x R , t) = u R , t ∈ (t 0 , T f ] (1b) 
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Fig. 1. Jump and limit terms of a piecewise discontinuous function v (x ) . 

u (x, t 0 ) = u 0 , x ∈ �, (1c) 

where � = [ x L , x R ] ⊂ R , t 0 and T f are the initial and final time instances, respectively, and ε denotes the diffusion coefficient. 

The model Eq. (1) becomes the Burgers equation with f (u, u x ) = uu x [8] , Burgers’–Fisher equation with f (u, u x ) = αuu x + 

βu (u − 1) [8] and the Schlögl or Nagumo equation with f (u, u x ) = u (1 − u )(1 − β) /δ [5] . 

A moving mesh method has three main components; the discretization of the physical PDE, mesh strategy using moni- 

tor functions and discretization of the mesh equation. The discretization of physical PDE is either coupled with the moving 

mesh equation or separated. In the quasi-Lagrangian approach, a large system of the discretized PDE and moving mesh 

equation are solved simultaneously by the standard ordinary differential equation (ODE) solvers. Instead, we use the re- 

zoning approach by solving alternately the PDE and mesh equation, which allows more flexibility; mesh generation can be 

coded separately and embedded in the solution of the PDE. Since the mesh is updated at each time step, the physical PDE 

has to be discretized at the next time step on the new mesh. We use the static rezoning approach with the same number 

of points at each time step [9] in contrast to the dynamic rezoning [10] where the number of mesh points is changed at 

every time step. Therefore in the static rezoning approach the solutions from old to new mesh have to be interpolated. 

The paper is organized as follows. In the next section we describe briefly the dG method for the 1D model problem 

(1) on a uniform fixed mesh. Moving mesh adaption strategy and the adaptive moving mesh dG algorithm is presented in 

Section 3 . Numerical results are given in Section 4 to demonstrate the effectiveness of the proposed method. 

2. Discretization of the problem on a fixed mesh 

Before giving the moving mesh strategy in Section 3 , in this section we describe the dG discretization of the model 

problem (1) on a fixed uniform mesh 

T h : x n = x L + nh, n = 0 , 1 , . . . , N I , (2) 

consisting of N I elements (sub-intervals) I n = [ x n −1 , x n ] , n = 1 , 2 , . . . , N I , and with the fixed mesh size h = (x R − x L ) /N I . 

2.1. Space discretization by discontinuous Galerkin method 

We use for the space discretization of the model problem (1) on a fixed mesh (2) the symmetric interior penalty Galerkin 

(SIPG) method [1,2] which is a member of the family of dG methods. The dG methods use the space of piecewise discon- 

tinuous polynomials of degree at most k : 

V h = { v : v | I n ∈ P k (I n ) , ∀ n = 1 , . . . , N I } , 
where P k (I n ) is the space of polynomials of degree at most k on an interval I n . Since the functions in V h are discontinuous at 

the inter-element nodes, we define the jump and average of a piecewise function v at the endpoints of I n , n = 1 , . . . , N I − 1 , 

respectively, as depicted in Fig. 1 , 

[ v (x n )] = v (x −n ) − v (x + n ) , { v (x n ) } = 

1 

2 

(v (x −n ) + v (x + n )) , (3) 

with 

v (x −n ) = lim 

x �→ x −n 
v (x ) , v (x + n ) = lim 

x �→ x + n 

v (x ) . (4) 

On the boundary nodes, the jump and average are defined as 

[ v (x 0 )] = −v (x + 0 ) , { v (x 0 ) } = v (x + 0 ) , [ v (x N I )] = v (x −N I ) , { v (x N I ) } = v (x + N I 
) . (5) 

The SIPG scheme is constructed by multiplying the continuous (the solution u is sufficiently smooth at the end points of 

I n ) Eq. (1) by a test function v ∈ V h and integrating by parts on each element I n , n = 1 , . . . , N I : ∫ x n 

x n −1 

u t v dx + 

∫ x n 

x n −1 

εu x v x dx − εu x (x n ) v (x −n ) + εu x (x n −1 ) v (x + n −1 ) + 

∫ x n 

x n −1 

f (u, u x ) v dx = 0 . 
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