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1. Introduction

An edge-colored graph is called a rainbow graph if the colors on its edges are distinct. The rainbow generalizations of
Ramsey theory are areas of current and very active research, one of which is the anti-Ramsey numbers. The anti-Ramsey
number AR(Kj,, H) was introduced by Erdds Simonovits and Sés [6] in 1973, which is defined to be the maximum number
of colors in an edge coloring of the complete graph K, without any rainbow H. Note that researchers also used the notation
rainbow number rb(G, H) which is defined to be the minimum number r of colors such that every r-edge-coloring of G
contains a rainbow copy of H. Clearly, rb(G, H) = AR(G,H) + 1.

It has been shown that the anti-Ramsey number AR(Kj, H) is closely related to Turdn number of the family {H —e:
e e E(H)} in K, for the graph H such that min{x (H —e) : e € E(H)} > 3. The anti-Ramsey numbers for some special graph
classes in complete graph have been determined, including cycles [1,6,12,20], paths [22], complete graph [19,21], small bipar-
tite graphs [2], stars [10], subdivided graphs [11], trees with k edges [13], graphs with independent cycles [15] and matchings
[5,8,21].

Moreover, researchers generalized the host graph K, to other graphs, in particular, to complete bipartite graphs and
regular bipartite graphs. The bipartite anti-Ramsey number was studied for even cycles [3], stars [10], matchings [17], and
trees with k edges [14]. There are few results for the case when the host graph G is a general graph. Interestingly, Li and
Xu [18] considered the anti-Ramsey numbers of matchings in regular bipartite graphs. Recently, Jendrol, Schiermeyer and Tu
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[9] obtained bounds for the anti-Ramsey number for matching in plane triangulations. Xu et al. [23] studied the problem in
general graphs. More results on anti-Ramsey numbers can be found in comprehensive surveys [7,16].

In this paper, we consider the anti-Ramsey number for matchings in 3-regular bipartite graphs. By using the known result
that the vertex cover equals the size of maximum matching in bipartite graphs, we prove that AR(G, mK;) =3(m—2) +1
for n > %(m —1) when G is a 3-regular bipartite graph with n vertices in each partite set. This improves the bound of Li
and Xu [18].

2. Preliminaries

Let G be a graph and c be a coloring of E(G). For an edge e € E(G), denote by c(e) the color assigned to the edge e. Let
SCV(G), denote by ec(S) the number of edges incident to S in G. Let S, TCV(G) and SNT = @, denote by [S, T]; the set of
edges of G which has one end vertex in S and T respectively.

A subset S of V(G) such that every edge of G has at least one end in S is called a vertex cover of G. The number of vertices
in a minimum vertex cover of G is denoted by S(G). The number of edges in a maximum matching of G is denoted by o/(G)

Lemma 2.1 [4]. For every bipartite graph G, &’ (G) = B(G).

Next we give the Turdn-type result for matchings in 3-regular bipartite graphs. The proof can be found in [18] and here
we omit the proof details.

Lemma 2.2 [18]. Let G be a bipartite graph with A(G) < 3. If |[E(G)| = 3m — 2, then G contains a matching of size m.
Li and Xu [18] proved the following result.

Theorem 2.3 [18]. Let G be a k-regular bipartite graph with n vertices in each partite set. Forallm > 2,k >3 andn > 3(m—1),
AR(G, mly) =k(m —2) + 1.

In this paper, by a kind of more precisely computation, we improve the bound for 3-regular bipartite graphs and obtain
the following result.

Theorem 24. Let m > 2 and G be a 3-regular bipartite graph with n vertices in each partite set. If n > %(m— 1), then
AR(G, mKy) =3m —5.

Sketch of Proof:

Denote by (X, Y) the bipartition of G with |X| = |Y| = n. First, we present a (3m — 5)-edge-coloring of G which does not
contain any rainbow matching of size m as follows. Take a (m — 2)-subset S of X. Color all the edges incident to the vertices
of S by distinct colors and color the rest edges by a new color. Clearly, there does not exist any rainbow matching of size m.
So AR(G, mKy) > 3m — 5.

Now we prove the inequality AR(G, mK;) < 3m — 5. We only need to show that each (3m — 4)-edge-coloring of G contains
a rainbow matching of size m. We prove this by the contradiction hypothesis. Let ¢ be a (3m — 4)-edge-coloring of G which
has no rainbow matching of size m. Let H be a rainbow spanning subgraph of G with |E(H)| = 3m — 4. By the contradiction
hypothesis, there is no mK, in H. By Lemmas 2.2 and 2.1, H has a minimum vertex cover V of size m — 1. Let S=V nX and
T=VnY.Let |S|=s and |T| =t, then s+t = m — 1. Take the graph H that maximizes the value of |s —t|. Without loss of
generality, assume that s > t.

Since G is a 3-regular bipartite graph, one of the followings must hold.

Case 1. For any x € V, dy(x) =3, and |[S, T]¢| = 1.
Case 2. There exists a vertex v e T such that dy(v) =2 and dy(x) =3 for any x e V \ {v}, and [S, T]y = 0.
Case 3. There exists a vertex u € S such that dy(u) =2 and dy(x) =3 for any x € V\{u}, and [S, T]y = 9.

3. Proof of Case 1

Let u € S and v € T with uv € E(H). Then uv is a cut edge of H. Let H; and H, denote the unions of components of H — uv
which contain vertices of S and T, respectively.

Claim 1. Let xy € E(G)\E(H) with x € Ny, (T) and c(xy) = c(e) for the edge e € E(H). Then H, —x — e contains a matching of
size t.

Let H; =H, —x—e, then E(H;) > 3t — 4. Suppose that H; does not have any rainbow matching of size t. By Lemmas
2.2 and 2.1, H, has a vertex cover V' of size t —1. Let S;=V'nX and Ty =V'nY. Let H =H+xy—e and § =SUS; U {x}.

Then S’ UT; is also a vertex cover of H' of size m — 1. However |S'| — |Ty| > |S| — |T|, a contradiction.

Claim 2. For any y € Y, dy(y) > 1.
Suppose that there exists a vertex y € Y with dy(y) = 0. Then there exists a vertex x € X\S such that xy € E(G)\E(H). Let
e € E(H) such that c(e) = c(xy).
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