
Applied Mathematics and Computation 292 (2017) 114–119 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Anti-Ramsey numbers for matchings in 3-regular bipartite 

graphs 

Zemin Jin 

∗

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China 

a r t i c l e i n f o 

MSC: 

05C15 

05C55 

05C70 

05D10 

Keywords: 

Anti-Ramsey number 

Rainbow matching 

3-regular bipartite graph 

a b s t r a c t 

The anti-Ramsey number AR ( K n , H ) was introduced by Erd ̋os, Simonovits and Sós in 1973, 

which is defined to be the maximum number of colors in an edge coloring of the complete 

graph K n without any rainbow H . Later, the anti-Ramsey numbers for several special graph 

classes in complete are determined. Moreover, researchers generalized the host graph K n 
to other graphs, in particular, to complete bipartite graphs and regular bipartite graphs. Li 

and Xu (2009) [18] proved that: Let G be a k -regular bipartite graph with n vertices in each 

partite set, then AR (G, mK 2 ) = k (m − 2) + 1 for all m ≥ 2, k ≥ 3 and n > 3(m − 1) . In this 

paper, we consider the anti-Ramsey number for matchings in 3-regular bipartite graphs. 

By using the known result that the vertex cover equals the size of maximum matching in 

bipartite graphs, we prove that AR (G, mK 2 ) = 3(m − 2) + 1 for n > 

3 
2 
(m − 1) when G is a 

3-regular bipartite graph with n vertices in each partite set. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

An edge-colored graph is called a rainbow graph if the colors on its edges are distinct. The rainbow generalizations of 

Ramsey theory are areas of current and very active research, one of which is the anti-Ramsey numbers. The anti-Ramsey 

number AR ( K n , H ) was introduced by Erd ̋os Simonovits and Sós [6] in 1973, which is defined to be the maximum number 

of colors in an edge coloring of the complete graph K n without any rainbow H . Note that researchers also used the notation 

rainbow number rb ( G , H ) which is defined to be the minimum number r of colors such that every r -edge-coloring of G 

contains a rainbow copy of H . Clearly, rb(G, H) = AR (G, H) + 1 . 

It has been shown that the anti-Ramsey number AR ( K n , H ) is closely related to Turán number of the family { H − e : 

e ∈ E(H) } in K n for the graph H such that min { χ(H − e ) : e ∈ E(H) } ≥ 3 . The anti-Ramsey numbers for some special graph 

classes in complete graph have been determined, including cycles [1,6,12,20] , paths [22] , complete graph [19,21] , small bipar- 

tite graphs [2] , stars [10] , subdivided graphs [11] , trees with k edges [13] , graphs with independent cycles [15] and matchings 

[5,8,21] . 

Moreover, researchers generalized the host graph K n to other graphs, in particular, to complete bipartite graphs and 

regular bipartite graphs. The bipartite anti-Ramsey number was studied for even cycles [3] , stars [10] , matchings [17] , and 

trees with k edges [14] . There are few results for the case when the host graph G is a general graph. Interestingly, Li and 

Xu [18] considered the anti-Ramsey numbers of matchings in regular bipartite graphs. Recently, Jendrol, Schiermeyer and Tu 
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[9] obtained bounds for the anti-Ramsey number for matching in plane triangulations. Xu et al. [23] studied the problem in 

general graphs. More results on anti-Ramsey numbers can be found in comprehensive surveys [7,16] . 

In this paper, we consider the anti-Ramsey number for matchings in 3-regular bipartite graphs. By using the known result 

that the vertex cover equals the size of maximum matching in bipartite graphs, we prove that AR (G, mK 2 ) = 3(m − 2) + 1 

for n > 

3 
2 (m − 1) when G is a 3-regular bipartite graph with n vertices in each partite set. This improves the bound of Li 

and Xu [18] . 

2. Preliminaries 

Let G be a graph and c be a coloring of E ( G ). For an edge e ∈ E ( G ), denote by c ( e ) the color assigned to the edge e . Let 

S ⊆V ( G ), denote by e G ( S ) the number of edges incident to S in G . Let S , T ⊆V ( G ) and S ∩ T = ∅ , denote by [ S , T ] G the set of 

edges of G which has one end vertex in S and T respectively. 

A subset S of V ( G ) such that every edge of G has at least one end in S is called a vertex cover of G . The number of vertices 

in a minimum vertex cover of G is denoted by β( G ). The number of edges in a maximum matching of G is denoted by α′ ( G ) 

Lemma 2.1 [4] . For every bipartite graph G , α′ (G ) = β(G ) . 

Next we give the Turán-type result for matchings in 3-regular bipartite graphs. The proof can be found in [18] and here 

we omit the proof details. 

Lemma 2.2 [18] . Let G be a bipartite graph with �( G ) ≤ 3 . If | E(G ) | ≥ 3 m − 2 , then G contains a matching of size m. 

Li and Xu [18] proved the following result. 

Theorem 2.3 [18] . Let G be a k-regular bipartite graph with n vertices in each partite set. For all m ≥ 2, k ≥ 3 and n > 3(m − 1) , 

AR (G, mK 2 ) = k (m − 2) + 1 . 

In this paper, by a kind of more precisely computation, we improve the bound for 3-regular bipartite graphs and obtain 

the following result. 

Theorem 2.4. Let m ≥ 2 and G be a 3-regular bipartite graph with n vertices in each partite set. If n > 

3 
2 (m − 1) , then 

AR (G, mK 2 ) = 3 m − 5 . 

Sketch of Proof: 

Denote by ( X , Y ) the bipartition of G with | X| = | Y | = n . First, we present a (3 m − 5) -edge-coloring of G which does not 

contain any rainbow matching of size m as follows. Take a (m − 2) -subset S of X . Color all the edges incident to the vertices 

of S by distinct colors and color the rest edges by a new color. Clearly, there does not exist any rainbow matching of size m . 

So AR (G, mK 2 ) ≥ 3 m − 5 . 

Now we prove the inequality AR (G, mK 2 ) ≤ 3 m − 5 . We only need to show that each (3 m − 4) -edge-coloring of G contains 

a rainbow matching of size m . We prove this by the contradiction hypothesis. Let c be a (3 m − 4) -edge-coloring of G which 

has no rainbow matching of size m . Let H be a rainbow spanning subgraph of G with | E(H) | = 3 m − 4 . By the contradiction 

hypothesis, there is no mK 2 in H . By Lemmas 2.2 and 2.1 , H has a minimum vertex cover V of size m − 1 . Let S = V ∩ X and 

T = V ∩ Y . Let | S| = s and | T | = t, then s + t = m − 1 . Take the graph H that maximizes the value of | s − t| . Without loss of 

generality, assume that s ≥ t . 

Since G is a 3-regular bipartite graph, one of the followings must hold. 

Case 1. For any x ∈ V , d H (x ) = 3 , and | [ S, T ] G | = 1 . 

Case 2. There exists a vertex v ∈ T such that d H (v ) = 2 and d H (x ) = 3 for any x ∈ V \ { v } , and [ S, T ] H = ∅ . 
Case 3. There exists a vertex u ∈ S such that d H (u ) = 2 and d H (x ) = 3 for any x ∈ V �{ u }, and [ S, T ] H = ∅ . 

3. Proof of Case 1 

Let u ∈ S and v ∈ T with u v ∈ E(H) . Then u v is a cut edge of H . Let H 1 and H 2 denote the unions of components of H − u v 
which contain vertices of S and T , respectively. 

Claim 1. Let xy ∈ E ( G ) �E ( H ) with x ∈ N H 2 
(T ) and c(xy ) = c(e ) for the edge e ∈ E ( H ). Then H 2 − x − e contains a matching of 

size t. 

Let H 

′ 
2 = H 2 − x − e, then E(H 

′ 
2 ) ≥ 3 t − 4 . Suppose that H 

′ 
2 does not have any rainbow matching of size t . By Lemmas 

2.2 and 2.1 , H 

′ 
2 has a vertex cover V 

′ 
of size t − 1 . Let S 1 = V 

′ ∩ X and T 1 = V 
′ ∩ Y . Let H 

′ = H + xy − e and S 
′ = S ∪ S 1 ∪ { x } . 

Then S 
′ ∪ T 1 is also a vertex cover of H 

′ 
of size m − 1 . However | S ′ | − | T 1 | > | S| − | T | , a contradiction. 

Claim 2. For any y ∈ Y , d H ( y ) ≥ 1. 

Suppose that there exists a vertex y ∈ Y with d H (y ) = 0 . Then there exists a vertex x ∈ X �S such that xy ∈ E ( G ) �E ( H ). Let 

e ∈ E ( H ) such that c(e ) = c(xy ) . 
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