Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the automorphisms of 2 - (v, k, 1) designs

Shangzhao Li^{a,b,*}, Weijun Liu^c, Xianhua Li^b

^a School of Mathematics and Statistics, Changshu Institute of Technology, Jiangsu 215500, PR China
^b School of Mathematics and Science, Soochow University, Jiangsu 215006, PR China

^c School of Mathematics, Central South University, Hunan 410075, PR China

ARTICLE INFO

MSC: 05B05 20B25

Keywords: Block-transitive 2 - (v, k, 1) design Automorphism Socle

ABSTRACT

Thirty years ago, a six-person team classified the pairs (\mathcal{D}, G) where \mathcal{D} is a 2 - (v, k, 1) design and *G* is a flag-transitive automorphism group of \mathcal{D} , with the exception of those in which *G* is a one-dimensional affine group. Since then the effort has been to classify those 2 - (v, k, 1) designs which are block-transitive but not flag-transitive. This paper contributes to the program for determining the pairs (\mathcal{D}, G) in which \mathcal{D} has a block-transitive group *G* of automorphisms. It is clear that if one wishes to study the structure of a finite group acting on a 2 - (v, k, 1) design then describing the socle is an important first step. Here we prove that if *G* is a block-transitive group of automorphisms of \mathcal{D} which has $T = {}^{2}F_{4}(q)$ as its socle then *T* is also transitive on the blocks of \mathcal{D} .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is part of a project to classify groups and 2 - (v, k, 1) designs where the group acts transitively on the blocks of the design. A 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of points and a collection \mathcal{B} of k-subsets of \mathcal{P} , called blocks, such that any 2-subsets of \mathcal{P} is contained in exactly one block. Traditionally one defined $v =: |\mathcal{P}|$ and $b =: |\mathcal{B}|$. We will always assume that 2 < k < v.

Thirty years ago, a six-person team [4] classified the pairs (\mathcal{D}, G) where \mathcal{D} is a 2 - (v, k, 1) design and G is a flagtransitive automorphism group of \mathcal{D} , with the exception of those in which G is a one-dimensional affine group. Since then the effort has been to classify those 2 - (v, k, 1) designs which are block-transitive but not flag-transitive. This paper contributes to the program for determining the pairs (\mathcal{D}, G) in which \mathcal{D} has a block-transitive subgroup, G, of automorphisms. From the assumption that G is transitive on the set \mathcal{B} of blocks, it follows that G is also transitive on the point set \mathcal{P} . This is a consequence of the theorem of Block in [2].

It is clear that if one wishes to study the structure of a finite group acting on a 2 - (v, k, 1) design then describing the socle is an important first step. In 1996 Camina showed in [5] that if *G* is a block-transitive, point-primitive automorphism group of a 2 - (v, k, 1) design \mathcal{D} , then the socle of *G* is either elementary abelian or simple. Camina and Praeger gave a generalization of this result that if *G* acts as a block-transitive, point-quasiprimitive automorphism group of a 2 - (v, k, 1) design \mathcal{D} , then *G* is affine or almost simple in [7]. Thus the study of block-transitive 2 - (v, k, 1) designs can be reduced to three cases, distinguishable by properties of the action on the point-set: that in which *G* is of affine type in the sense that it has an elementary abelian transitive normal subgroup; that in which *G* has an intransitive minimal normal subgroup; and that in which *G* is almost simple, in the sense that there is a simple transitive normal subgroup *T* in *G* whose centraliser is

http://dx.doi.org/10.1016/j.amc.2016.06.027 0096-3003/© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author at: School of Mathematics and Statistics, Changshu Institute of Technology, Jiangsu 215500, PR China. *E-mail address*: lszfd2004@126.com (S. Li).

trivial, so that $T \trianglelefteq G \le Aut(T)$. Camina and Spiezia have proved that *T* is not a sporadic simple group in [9]. Camina, Neumann, and Praeger showed that *T* cannot be an alternating group unless $G = A_7$ and A_8 in 2003 (see [6]). Liu et al. have studied the special case where G = T = Soc(G) is a finite group of Lie type of Lie rank 1 acting block-transitively on a design in [18–21]. Recently, there have been a number contributions to this classification (see [14–16], [22–24]). Here we focus on classifying $2 - (\nu, k, 1)$ designs admitting a block-transitive automorphism group of almost simple type with socle ${}^2F_4(q)$ and prove the following theorem:

Main Theorem Let *G* be an almost simple group acting block-transitively on a 2 - (v, k, 1) design \mathcal{D} . If T = Soc(G) is isomorphic to ${}^{2}F_{4}(q)$, then *T* is block-transitive.

We introduce some notation below. Let *X* and *Y* be arbitrary finite groups. The expression *X* · *Y* denotes an extension of *X* by *Y* and *X*: *Y* denotes the split extension. If *Y* is a subgroup of *X*, then the symbol |X: Y| denotes the index of *Y* in *X*. The symbol [m] denotes an arbitrary group of order *m* while Z_m or simply *m* denotes a cyclic group of that order. Other notation for group structure is standard. In addition, we use the symbol $p^i||n$ to denote $p^i|n$ but $p^{i+1} \nmid n$ and the symbol $\pi(n)$ to denote the set of prime divisors of an integer *n*. Let *G* be a finite group and $x \in G$. The symbol Fix_{Ω}($\langle x \rangle$) denote the fixed points set of $\langle x \rangle$ acting on a set Ω . Let *G* be a group acting on a 2 - (v, k, 1) design D. The symbols G_{α} and G_{β} denote the stabilizer of point α of \mathcal{P} and the stabilizer of block *B* of \mathcal{B} in the action of *G*, respectively.

The paper is organized as follows. Section 2 describes several preliminary results concerning the group ${}^{2}F_{4}(q)$ and 2 – $(\nu, k, 1)$ designs. Section 3 gives the proof of the theorem.

2. Preliminary results

The Ree groups ${}^{2}F_{4}(q)$ are the fixed points of a certain automorphism of the Chevalley groups of type F_{4} over a finite field F = GF(q), where $q = 2^{a}$ with a = 2n + 1, $n \ge 0$. Ree [27] showed that the groups ${}^{2}F_{4}(q)$ are simple if q > 2, while Tits [28] showed that ${}^{2}F_{4}(2)$ is not simple but possesses a simple subgroup of index 2. Let $T = {}^{2}F_{4}(q)$. Then the order of T is $q^{12}(q-1)(q^{3}+1)(q^{4}-1)(q^{6}+1)$.

Let both *G* and *A* be finite groups, and Ω a finite set. A triple (*A*, *G*, Ω) is called *exceptional* if it satisfies the following conditions:

(1) *G* is a normal subgroup of *A*;

Table 1

- (2) both *A* and *G* are transitive permutation groups on Ω ;
- (3) the diagonal of $\Omega \times \Omega$ is the only common orbit of *A* and *G* on $\Omega \times \Omega$.

This definition is equivalent to the following: Let $\alpha \in \Omega$, then every A_{α} -orbit except $\{\alpha\}$ breaks up into strictly smaller G_{α} -orbits.

We call the triple (A, G, Ω) *arithmetically exceptional*, if there is a subgroup B of A which contains G, such that (B, G, Ω) is exceptional, and B/G is cyclic. When A is a primitive permutation group of almost simple type, Guralnick, Muller and Saxl have obtained their classification (see [12]). In particular, when $Soc(A) = {}^{2}F_{4}(q)$, there is the following lemma:

Lemma 2.1 (Theorem 1.5 (g) of [12]). Let A be a primitive permutation group of almost simple type, and $L \leq A \leq Aut(L)$ with $L = {}^{2}F_{4}(q)$. Suppose that there are subgroups B and G of A with $G \leq A$ and B/G cyclic, such that (B, G) is exceptional. Let M be a point stabilizer in A. Then $M \cap L$ is a subfield group, the centralizer in L of a field automorphism of odd prime order r.

Lemma 2.2 [26]. Every maximal subgroup of $T = {}^{2}F_{4}(q)$, $q = 2^{2n+1}$, $n \ge 1$, is conjugate to one of the following Table 1:

Structure	Order	Remarks
$P_1 = [q^{11}] : (PSL(2,q) \times (q-1))$	$q^{12}(q+1)(q-1)^2$	parabolic
$P_2 = [q^{10}] : ({}^2B_2(q) \times (q-1))$	$q^{12}(q-1)^2(q^2+1)$	parabolic
<i>SU</i> (3, <i>q</i>): 2	$2q^3(q-1)(q+1)^2(q^2-q+1)$	
$(Z_{q+1} \times Z_{q+1})$: <i>GL</i> (2, 3)	$48(q+1)^2$	
$(Z_{q+\epsilon\sqrt{2q}+1} \times Z_{q+\epsilon\sqrt{2q}+1})$: [96]	$96(q+\epsilon\sqrt{2q}+1)^2$	if $\epsilon = -, q > 8$
$Z_{q^2 + \epsilon \sqrt{2}q^{\frac{3}{2}} + q + \epsilon \sqrt{2}q + 1}$: 12	$12(q^2 + \epsilon\sqrt{2}q^{\frac{3}{2}} + q + \epsilon\sqrt{2q} + 1)$	$\epsilon = \pm$
<i>PGU</i> (3, <i>q</i>): 2	$2q^{3}(q-1)(q+1)^{2}$	
${}^{2}B_{2}(q)$ (2	$2q^2(q^2+1)(q-1)$	
$B_2(q)$: 2	$2q^4(q^2-1)(q^4-1)$	
${}^{2}F_{4}(q_{0})$	$q_0^6(q_0-1)(q_0^3+1)(q_0^4-1)(q_0^6+1)$	$q = q_0^{\delta}$ and δ is a prime

Conversely, if H is conjugate to one of these groups, then $N_G(H)$ is maximal in G.

Lemma 2.3 ([1], Proposition 2.34). The Ree group ${}^{2}F_{4}(q)$ has only two conjugacy classes of involutions, and the orders of the centralizers of involutions $j_{1} = 2A$, $j_{2} = 2B$ are $q^{12}(q-1)(q^{2}+1)$ and $q^{10}(q^{2}-1)$, respectively.

Lemma 2.4. Let G be a finite group and H a subgroup of G, $x \in H$. Then $|C_G(x)| \leq |C_H(x)||G$: H|.

Download English Version:

https://daneshyari.com/en/article/4625654

Download Persian Version:

https://daneshyari.com/article/4625654

Daneshyari.com