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a b s t r a c t 

We establish asymptotic formulae for regularly varying solutions of the half-linear differ- 

ential equation 

(r(t) | y ′ | α−1 
sgn y ′ ) 

′ = p(t) | y | α−1 
sgn y, 

where r , p are positive continuous functions on [ a , ∞ ) and α ∈ (1, ∞ ). The results can 

be understood in several ways: Some open problems posed in the literature are solved. 

Results for linear differential equations are generalized; some of the observations are new 

even in the linear case. A refinement on information about behavior of solutions in stan- 

dard asymptotic classes is provided. A precise description of regularly varying solutions 

which are known to exist is given. Regular variation of all positive solutions is proved. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

We consider the half-linear equation 

(r(t)�(y ′ )) ′ = p(t)�(y ) , (1) 

where r , p are positive continuous functions on [ a , ∞ ) and �(u ) = | u | α−1 sgn u with α > 1. We are interested in asymptotic 

behavior of solutions of (1) ; we obtain asymptotic formulae for (normalized) regularly varying solutions. 

Our results can be understood in several ways. We solve open problems posed in the literature ( [16,17] ). We generalize 

results for linear differential equations ( [6] ); some observations are new even in the linear case. We provide a refinement 

on information about behavior of solutions in standard asymptotic classes ( [2,3] ). We give a precise description of regularly 

varying solutions which are known to exist ( [3,10,11,16] ). 

That the theory of regularly varying functions can be very useful in the study of asymptotic properties of differential 

equations has been shown in many works, see the monograph [12] and the survey text [15] . Half-linear differential equations 

were studied in this framework e.g. in [3,9–11,13,14,16,17] . 

The paper is organized as follows. In the next section we recall basic information on nonoscillatory solutions of (1) . 

Section 3 is devoted to asymptotic formulae in the case lim t→∞ 

t α p(t) /r(t) = 0 . In particular we recall existing results there, 

which serve to prove complementary result and generalizations. The case lim t→∞ 

t α p(t) /r(t) = C > 0 is treated in Section 4 . 

A modified Riccati technique plays an important role in the proof. We discuss also necessary conditions and relations to 
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standard asymptotic classes. A similar idea is used in Section 5 to establish a new proof for a variant of the result from 

Section 3 . Section 6 is devoted to a generalization of the previous results, based on suitable transformations of independent 

variable. The last section is an Appendix with basic information on the theory of regular variation, which plays a significant 

role in this paper. 

2. Nonoscillatory solutions 

It is known (see [3, Chapter 4] ) that (1) with positive r , p is nonoscillatory, i.e. all its solutions are eventually of constant 

sign. Without loss of generality, we work just with positive solutions, i.e. with the class 

S = { y : y (t) is a positive solution of (1) for large t} . 
Because of the sign conditions on the coefficients, all positive solutions of (1) are eventually monotone, therefore they belong 

to one of the following disjoint classes: 

IS = { y ∈ S : y ′ (t) > 0 for large t} , DS = { y ∈ S : y ′ (t) < 0 for large t} . 
It can be shown that both these classes are nonempty (see ( [3, Lemma 4.1.2] ). The classes IS , DS can be divided into four 

mutually disjoint subclasses: 

IS ∞ 

= { y ∈ IS : lim 

t→∞ 

y (t) = ∞} , IS B = { y ∈ IS : lim 

t→∞ 

y (t) = b ∈ R } , 
DS B = { y ∈ DS : lim 

t→∞ 

y (t) = b > 0 } , DS 0 = { y ∈ DS : lim 

t→∞ 

y (t) = 0 } . 
Define the so-called quasiderivative of y ∈ S by y [1] = r�(y ′ ) . We introduce the following convention 

IS u, v = { y ∈ IS : lim 

t→∞ 

y (t) = u, lim 

t→∞ 

y [1] (t) = v } 
DS u, v = { y ∈ DS : lim 

t→∞ 

y (t) = u, lim 

t→∞ 

y [1] (t) = v } . 
For subscripts of IS and DS , by u = B resp. v = B we mean that the value of u resp. v is a real nonzero number. Using this 

convention we further distinguish the following types of solutions which form subclasses in DS 0 , DS B , IS B , and IS ∞ 

: 

DS 0 , 0 , DS 0 ,B , DS B, 0 , DS B,B , IS B,B , IS B, ∞ 

, IS ∞ ,B , IS ∞ , ∞ 

. (2) 

More information about (non)existence of solutions in these subclasses can be found in [2] and [3, Chapter 4] . In some places 

we need to emphasize that the classes of eventually positive increasing resp. decreasing solutions resp. their subclasses are 

associated with a particular equation, say ( ∗). Then we write IS (∗) , DS (∗) , IS (∗) ∞ 

, etc. 

No matter whether p is positive, if (1) is nonoscillatory, then there exists a nontrivial solution y of (1) such that for 

every nontrivial solution u of (1) with u � = λy , λ ∈ R , we have y ′ ( t )/ y ( t ) < u ′ ( t )/ u ( t ) for large t , see [3, Section 4.2] . Such a 

solution is said to be a principal solution. Solutions of (1) which are not principal, are called nonprincipal solutions. Principal 

solutions are unique up to a constant multiple. Denote P = { y ∈ S : y is principal } . 
Let y ∈ S . Denoted w = r�( y ′ /y ) , it satisfies the generalized Riccati equation 

w 

′ − p(t) + (α − 1) r 1 −β (t) | w | β = 0 , (3) 

where β denotes the conjugate number of α, i.e., 1 /α + 1 /β = 1 , see [3, Chapter 1] . Another substitution (introduced in [4] ) 

v = h αw − rh �(h ′ ) , h ∈ C 1 , h ( t ) � = 0 leads to a modified Riccati equation (see (15) below), and is very useful in the proof of 

Theorem 2 . This substitution supplies—to some extent—the (“linear”) transformation of dependent variable y = hu in Eq. (1) , 

which does not work in the half-linear case because of lack of additivity. Recall that another serious limitation in the theory 

of half-linear differential equations is the absence of a reduction of order formula; the reason is that there is no reasonable 

Wronskian identity for half-linear equations. 

By �−1 we mean the inverse of �, i.e., �−1 (u ) = | u | β−1 sgn u . If α = 2 , then � = �−1 = id and (1) reduces to the linear 

equation (r(t) y ′ ) ′ = p(t) y . 

3. The case t αp ( t )/ r ( t ) → 0 

For the notation concerning regular variation (like RV (ϑ) , N RV (ϑ) , SV , N SV , L f , RV ω (ϑ) , etc.) which is used through- 

out the paper, see Appendix . As usual, the relation f ( t ) ∼ g ( t ) (as t → ∞ ) means lim t→∞ 

f (t) /g(t) = 1 and f (t) = o(g(t)) (as 

t → ∞ ) means lim t→∞ 

f (t) /g(t) = 0 . To simplify writing of many asymptotic formulae, we denote 

E (σ, τ, C, f ) = exp 

{∫ τ

σ
(1 + o(1)) C f (s ) d s 

}
, 

where o (1) is meant either as τ → ∞ when τ < ∞ or as σ → ∞ when τ = ∞ . 

The following conditions play an important role: 

p ∈ RV (δ) , r ∈ RV (δ + α) (4) 
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