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where r, p are positive continuous functions on [a, co) and « € (1, oo). The results can
be understood in several ways: Some open problems posed in the literature are solved.
Results for linear differential equations are generalized; some of the observations are new
even in the linear case. A refinement on information about behavior of solutions in stan-
dard asymptotic classes is provided. A precise description of regularly varying solutions
which are known to exist is given. Regular variation of all positive solutions is proved.
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1. Introduction

We consider the half-linear equation
r@®y)) =p®)@W). (1)

where 1, p are positive continuous functions on [a, o) and ®(u) = |u|®'sgnu with o > 1. We are interested in asymptotic
behavior of solutions of (1); we obtain asymptotic formulae for (normalized) regularly varying solutions.

Our results can be understood in several ways. We solve open problems posed in the literature ([16,17]). We generalize
results for linear differential equations (|6]); some observations are new even in the linear case. We provide a refinement
on information about behavior of solutions in standard asymptotic classes ([2,3]). We give a precise description of regularly
varying solutions which are known to exist ([3,10,11,16]).

That the theory of regularly varying functions can be very useful in the study of asymptotic properties of differential
equations has been shown in many works, see the monograph [12] and the survey text [15]. Half-linear differential equations
were studied in this framework e.g. in [3,9-11,13,14,16,17].

The paper is organized as follows. In the next section we recall basic information on nonoscillatory solutions of (1).
Section 3 is devoted to asymptotic formulae in the case lim;_. o, t*p(t)/r(t) = 0. In particular we recall existing results there,
which serve to prove complementary result and generalizations. The case lim;_, o, t*p(t)/r(t) = C > 0 is treated in Section 4.
A modified Riccati technique plays an important role in the proof. We discuss also necessary conditions and relations to
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standard asymptotic classes. A similar idea is used in Section 5 to establish a new proof for a variant of the result from
Section 3. Section 6 is devoted to a generalization of the previous results, based on suitable transformations of independent
variable. The last section is an Appendix with basic information on the theory of regular variation, which plays a significant
role in this paper.

2. Nonoscillatory solutions

It is known (see [3, Chapter 4]) that (1) with positive r, p is nonoscillatory, i.e. all its solutions are eventually of constant
sign. Without loss of generality, we work just with positive solutions, i.e. with the class

S ={y :y(t) is a positive solution of (1) for large t}.

Because of the sign conditions on the coefficients, all positive solutions of (1) are eventually monotone, therefore they belong
to one of the following disjoint classes:

IS={yeS:y(t) >0 for large t}, DS={yeS:y(t) <O for large t}.

It can be shown that both these classes are nonempty (see ([3, Lemma 4.1.2]). The classes ZS, DS can be divided into four
mutually disjoint subclasses:

IS ={yeIS: [limy(t) =oo}, ISp={yeIS: tlim y(t) =b e R},
DSp={yeDS: tlim y(t)=b=>0}, DSy={yeDS: tlim y(t) =0}.

Define the so-called quasiderivative of y € S by yl!l = r®(y’). We introduce the following convention
ISuy={yeZS:limy(t) =u, lim y) =v}
DSy ={yeDS: limy(t) =u,  lim y(t) = v).

For subscripts of ZS and DS, by u = B resp. v = B we mean that the value of u resp. v is a real nonzero number. Using this
convention we further distinguish the following types of solutions which form subclasses in DS, DSg, ZSp, and ZS:

DSo,0, DSo., DSp.0, DS B, ZSB.B ZSB 0o+ LS00,B: LS 00,00- (2)

More information about (non)existence of solutions in these subclasses can be found in [2] and [3, Chapter 4]. In some places
we need to emphasize that the classes of eventually positive increasing resp. decreasing solutions resp. their subclasses are
associated with a particular equation, say (x). Then we write ZS®), DS™), ISC(,Z), etc.

No matter whether p is positive, if (1) is nonoscillatory, then there exists a nontrivial solution y of (1) such that for
every nontrivial solution u of (1) with u # Ay, A € R, we have y'(t)[y(t) < u/(t)/u(t) for large t, see [3, Section 4.2]. Such a
solution is said to be a principal solution. Solutions of (1) which are not principal, are called nonprincipal solutions. Principal
solutions are unique up to a constant multiple. Denote S = {y € S : y is principal}.

Let y € S. Denoted w = r®(y’/y), it satisfies the generalized Riccati equation

w = p(t) + (@ — Dr' P )|w|f =0, 3)

where 8 denotes the conjugate number of «, i.e.,, 1/a +1/8 =1, see [3, Chapter 1]. Another substitution (introduced in [4])
v="hw—rh® ('), h € C!, h(t) # 0 leads to a modified Riccati equation (see (15) below), and is very useful in the proof of
Theorem 2. This substitution supplies—to some extent—the (“linear”) transformation of dependent variable y = hu in Eq. (1),
which does not work in the half-linear case because of lack of additivity. Recall that another serious limitation in the theory
of half-linear differential equations is the absence of a reduction of order formula; the reason is that there is no reasonable
Wronskian identity for half-linear equations.

By ®~! we mean the inverse of ®, i.e., ®~1(u) = |u|f~Tsgnu. If @ = 2, then ® = ®~! =id and (1) reduces to the linear
equation (r(t)y")’ = p(t)y.

3. The case t*p(t)/r(t) — 0
For the notation concerning regular variation (like RV(%), NRV(9), SV, NSV, L, RV, (), etc.) which is used through-

out the paper, see Appendix. As usual, the relation f{t) ~ g(t) (as t — oo) means lim;_ ., f(t)/g(t) =1 and f(t) = o(g(t)) (as
t — oo) means lim;_, o, f(t)/g(t) = 0. To simplify writing of many asymptotic formulae, we denote

¢(o,1,C f) =exp {/r(l +0(1))Cf(s) ds},

where o(1) is meant either as 7 — oo when T < oo or as ¢ — oo when 7 = co.
The following conditions play an important role:

peRV(@), reRV(ES +a) (4)
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