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a b s t r a c t 

Pest management is a complex issue in real applications, and a practical program in pest 

control in general involves two pest thresholds, where the biological control and chemical 

control are activated respectively. Aiming at providing a good balance between the bio- 

logical control and chemical control, this work presented an integrated pest management 

predator–prey model, where the yield of releases of predator and the strength of pesticide 

spraying are linearly dependent on the selected control level. Firstly, to determine the fre- 

quency of spraying chemical pesticide and releasing of predator, the existence of the order- 

1 periodic orbit of the proposed model is discussed by the successor function method. And 

then, to ensure a certain robustness of adopted control, the stability of the order-1 periodic 

orbit is verified by a stability criterion extracted for a general semi-continuous dynamical 

system. In addition, to minimize the total cost (i.e. culturing predators and spraying pesti- 

cide) in pest control, an optimization problem is formulated and the optimum pest control 

level is obtained. At last, to complement the theoretical results, the numerical simulations 

with a specific model are carried out step by step. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Threat of pests to agricultural productions is a serious problem across the world, which makes pests control being an 

interesting topic and attracts a great attentions on the development of effective pest control methods. Integrated pest man- 

agement (IPM, involves combining biological, mechanical, and chemical tactics) is a very effective method in controlling 

pests with minimal use of harmful pesticides and other undesirable measures, which has been proved to be more effective 

than the classic methods both experimentally (e.g. [1–3] ) and theoretically (e.g. [4,5] ). The goal of IPM is not to eradicate 

pests, instead to control the number of the pests under an economic threshold (ET) and protect ecosystems in maximum 

extent. 

IPM strategy may cause biological population change radically due to the variety of manual intervention, and impulsive 

differential equations (IDEs) in mathematics becomes a powerful tool to describe these phenomena [6] . Theoretical studies 

on the theory of IDEs can be found in [7–10] . Based on the theoretical results, many scholars have introduced impulsive 
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differential equations in predator–prey system to model the pest control, for example: the periodic release of predators [11–

16] ; the periodic release of pests infected by a disease [17,18] ; the periodic release of predators and infected pests [19] ; the 

periodic release of infected pests combined with periodic applications of pesticides [20] ; the periodic release of predators, 

pests combined with periodic applications of pesticides [21–24] and state dependent release of predators combined with 

applications of pesticides [3,25–35] . As a pioneer work in state-dependent pest control, Tang et al. [3,25,26] introduced the 

following predator–prey model with state-dependent impulsion, i.e. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d x (t) 

d t 
= x (t)(b 1 − a 11 x (t)) − a 12 x (t) y (t) 

d y (t) 

d t 
= y (t) ( −b 2 + f conv (x (t)) ) 

⎫ ⎬ ⎭ 

x � = ET 

�x = −px (t) 

�y = −qy (t) + τ

}
x = ET 

(1.1) 

where f conv describes the per capita conversion rate form prey to predator, ET is the pest economic threshold and 0 < 

p < 1, 0 ≤ q < 1 and τ > 0. Notice that the model (1.1) assumes that the measures of releasing the predator and spraying 

pesticide are taken at the same pest level, and also at the same time. But in real applications, the two control measures 

may be adopted at different pest levels. Motivated by this situation, Nie et al. [36,37] , Tian et al. [38,39] , Zhao et al. [40] and 

Zhang et al. [41] proposed and analyzed the following predator–prey system model by assuming that releasing natural 

enemies and spraying pesticide are taken at different thresholds, i.e. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d x (t) 

d t 
= x (t)(g grow (x (t)) − a 12 y (t)) 

d y (t) 

d t 
= y (t) ( −b 2 + f conv (x (t)) ) 

⎫ ⎬ ⎭ 

x � = SHT , x � = SHT 

or x = SHT , y > y ML 

�x = 0 

�y = τmax 

}
x = SHT , y � y ML 

�x = −px (t) 

�y = −qy (t) + τmin 

}
x = EIT 

(1.2) 

with f conv (x (t)) described by a 21 x ( t ) and λa 12 x (t) / (1 + a 12 hx (t)) , and g grow (x (t)) described by b 1 − a 11 x (t) and ln ( K / x ( t )) 

respectively, where g grow describes per capita growth rate of the pest in absent of predator, and y ML repre- 

sents the predator maintainable level at x = SHT , which is defined by y ML � a −1 
12 

g grow ( f −1 
conv (b 2 )) σSHT , where σSHT ∈ 

[0 , g grow (SHT ) /g grow ( f −1 
conv (b 2 ))] is a reference parameter and f −1 

conv is the inverse function of f conv . 

The idea of involving the biological and chemical controls at different pest thresholds is interesting and has practical 

significance. But in this process a key problem should be pointed out, that is the biological control is adopted when the 

pest density x reaches the threshold SHT while the predator density y is lower than its maintainable level y ML , but for a 

higher pest density x = ET , where SHT < ET < EIT , there is no control strategy adopted. This is obviously unreasonable. In 

addition, from economic and practical point of view, the control taken at SHT sometimes seems to be a little early and the 

yield of releases of the predator will be also large, while the control taken at EIT seems to be a little late and the chemical 

control strength will be also high. This motivated us to consider a practical problem: if we select one pest level between SHT 

and EIT to take control, which level is the best? How to keep a good balance between yield of releases of the predator and 

strength of pesticide spraying in practice? Based on this consideration, this work presents a pest management predator–prey 

model by integrating the biological and chemical control strategies at SHT and EIT respectively. 

This paper is organized as follows. In Section 2 , a pest management predator–prey model by an integrated control strat- 

egy is put forward, where the yield releases of predator and strength of pesticide spraying are linearly dependent on the 

selected control level. In Section 3 , the existence of the order-1 periodic orbit is discussed by successor function method. 

The stability of the order-1 periodic orbit is verified by a stability criterion extracted for a general semi-continuous dynamic 

system. In addition, an optimization problem is formulated to minimize the total cost in pest control. In Section 4 , the 

numerical simulations are carried out with a specific model to complement the theoretical results step by step. The final 

conclusion is presented in Section 5 . 

2. Model formulation 

Let x ( t ) and y ( t ) denote the prey and predator densities at time t . The pest per capita growth rate g grow in absent of 

predator is assumed to follow Ludwig’s model [42] 

g grow (x (t)) = r 

(
1 − x (t) 

K 

)
, 

where r is the birth rate, K is the environmental carrying capacity for the prey in absent of predator. For the species without 

environmental carrying capacity constraint, K can be chosen as a larger positive constant. The predation is assumed to be 
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